

National Security Agency

Cybersecurity and Infrastructure Security Agency

Cybersecurity Technical Report

Kubernetes Hardening Guidance

August 2021

S/N U/OO/168286-21
PP-21-1104

Version 1.0

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 ii

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Notices and history

Document change history
Date Version Description

August 2021 1.0 Initial release

Disclaimer of warranties and endorsement

The information and opinions contained in this document are provided "as is" and

without any warranties or guarantees. Reference herein to any specific commercial

products, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring

by the United States Government, and this guidance shall not be used for advertising or

product endorsement purposes.

Trademark recognition

Kubernetes is a registered trademark of The Linux Foundation. ▪ SELinux is a registered

trademark of the National Security Agency. ▪ AppArmor is a registered trademark of

SUSE LLC. ▪ Windows and Hyper-V are registered trademarks of Microsoft Corporation.

▪ ETCD is a registered trademark of CoreOS, Inc. ▪ Syslog-ng is a registered trademark

of One Identity Software International Designated Activity Company. ▪ Prometheus is a

registered trademark of The Linux Foundation. ▪ Grafana is a registered trademark of

Raintank, Inc. dba Grafana Labs ▪ Elasticsearch and ELK Stack are registered

trademarks of Elasticsearch B.V.

Copyright recognition

Information, examples, and figures in this document are based on Kubernetes

Documentation by The Kubernetes Authors, published under a Creative Commons

Attribution 4.0 license.

https://kubernetes.io/docs/
https://kubernetes.io/docs/
https://git.k8s.io/website/LICENSE
https://git.k8s.io/website/LICENSE

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 iii

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Publication information

Author(s)

National Security Agency (NSA)

Cybersecurity Directorate

Endpoint Security

Cybersecurity and Infrastructure Security Agency (CISA)

Contact information

Client Requirements / General Cybersecurity Inquiries:

Cybersecurity Requirements Center, 410-854-4200, Cybersecurity_Requests@nsa.gov

Media inquiries / Press Desk:

Media Relations, 443-634-0721, MediaRelations@nsa.gov

For incident response resources, contact CISA at CISAServiceDesk@cisa.dhs.gov.

Purpose

NSA and CISA developed this document in furtherance of their respective cybersecurity

missions, including their responsibilities to develop and issue cybersecurity

specifications and mitigations. This information may be shared broadly to reach all

appropriate stakeholders.

mailto:Cybersecurity_Requests@nsa.gov
mailto:MediaRelations@nsa.gov
mailto:CISAServiceDesk@cisa.dhs.gov

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 iv

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Executive summary

Kubernetes® is an open-source system that automates the deployment, scaling, and

management of applications run in containers, and is often hosted in a cloud

environment. Using this type of virtualized infrastructure can provide several flexibility

and security benefits compared to traditional, monolithic software platforms. However,

securely managing everything from microservices to the underlying infrastructure

introduces other complexities. The hardening guidance detailed in this report is

designed to help organizations handle associated risks and enjoy the benefits of using

this technology.

Three common sources of compromise in Kubernetes are supply chain risks, malicious

threat actors, and insider threats.

Supply chain risks are often challenging to mitigate and can arise in the container build

cycle or infrastructure acquisition. Malicious threat actors can exploit vulnerabilities and

misconfigurations in components of the Kubernetes architecture, such as the control

plane, worker nodes, or containerized applications. Insider threats can be

administrators, users, or cloud service providers. Insiders with special access to an

organization’s Kubernetes infrastructure may be able to abuse these privileges.

This guidance describes the security challenges associated with setting up and securing

a Kubernetes cluster. It includes hardening strategies to avoid common

misconfigurations and guide system administrators and developers of National Security

Systems on how to deploy Kubernetes with example configurations for the

recommended hardening measures and mitigations. This guidance details the following

mitigations:

 Scan containers and Pods for vulnerabilities or misconfigurations.

 Run containers and Pods with the least privileges possible.

 Use network separation to control the amount of damage a compromise can

cause.

 Use firewalls to limit unneeded network connectivity and encryption to protect

confidentiality.

 Use strong authentication and authorization to limit user and administrator

access as well as to limit the attack surface.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 v

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 Use log auditing so that administrators can monitor activity and be alerted to

potential malicious activity.

 Periodically review all Kubernetes settings and use vulnerability scans to help

ensure risks are appropriately accounted for and security patches are applied.

For additional security hardening guidance, see the Center for Internet Security

Kubernetes benchmarks, the Docker and Kubernetes Security Technical

Implementation Guides, the Cybersecurity and Infrastructure Security Agency (CISA)

analysis report, and Kubernetes documentation [1], [2], [3], [6].

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 vi

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Contents

Kubernetes Hardening Guidance ……………………………………………………..i

Executive summary ... iv

Introduction ... 1

Recommendations ... 2
Architectural overview ... 3

Threat model ... 5

Kubernetes Pod security .. 7

“Non-root” containers and “rootless” container engines ... 7
Immutable container file systems ... 8
Building secure container images .. 8
Pod Security Policies ... 10
Protecting Pod service account tokens .. 11
Hardening container engines ... 12

Network separation and hardening ... 13

Namespaces ... 13
Network policies .. 14
Resource policies .. 14
Control plane hardening .. 15

Etcd ... 16
Kubeconfig Files .. 16

Worker node segmentation .. 16
Encryption ... 17
Secrets .. 17
Protecting sensitive cloud infrastructure .. 18

Authentication and authorization .. 18

Authentication .. 19
Role-based access control .. 20

Log auditing .. 22

Logging ... 22

Kubernetes native audit logging configuration .. 24
Worker node and container logging ... 25
Seccomp: audit mode .. 26
SYSLOG .. 27

SIEM platforms .. 27
Alerting .. 28
Service meshes ... 29
Fault tolerance ... 30
Tools ... 31

Upgrading and application security practices .. 32

Works cited ... 33

Appendix A: Example Dockerfile for non-root application .. 34

Appendix B: Example deployment template for read-only file systemfilesystem 35

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 vii

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix C: Example Pod Security Policy ... 36

Appendix D: Example namespace ... 38

Appendix E: Example network policy .. 39

Appendix F: Example LimitRange ... 40

Appendix G: Example ResourceQuota .. 41

Appendix H: Example encryption .. 42

Appendix I: Example KMS configuration .. 43

Appendix J: Example pod-reader RBAC Role ... 45

Appendix K: Example RBAC RoleBinding and ClusterRoleBinding 46

Appendix L: Audit Policy .. 48

Appendix M: Example flags with which to submit Audit Policy file to kube-apiserver 49

Appendix N: Webhook configuration .. 51

Figures

Figure 1: High-level view of Kubernetes cluster components .. 1

Figure 2: Kubernetes architecture .. 3

Figure 3: Pod components with sidecar proxy as logging container 7

Figure 4: A container build workflow, optimized with webhook and admission controller 9

Figure 5: Cluster leveraging service mesh to integrate logging with network security30

Tables

Table I: Pod Security Policy components ...10

Table II: Control plane ports ...15

Table III: Worker node ports ...17

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 1

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Introduction

Kubernetes, frequently abbreviated “K8s”, is an open-source container-orchestration

system used to automate deploying, scaling, and managing containerized applications.

It manages all elements that make up a cluster, from each microservice in an

application to entire clusters. Using containerized applications as microservices can

provide more flexibility and security benefits compared to monolithic software platforms,

but also can introduce other complexities.

Figure 1: High-level view of Kubernetes cluster components

This guidance focuses on security challenges and suggests hardening strategies where

possible that are applicable to administrators of National Security Systems and critical

infrastructure. Although this guidance is tailored to National Security Systems and

critical infrastructure organizations, administrators of federal and state, local, tribal, and

territorial (SLTT) government networks are also encouraged to implement the

recommendations provided. Kubernetes clusters can be complex to secure and are

often abused in compromises that exploit their misconfigurations. The following

guidance offers specific security configurations that can help build more secure

Kubernetes clusters.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 2

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Recommendations

A summary of the key recommendations from each section are:

 Kubernetes Pod security

 Use containers built to run applications as non-root users

 Where possible, run containers with immutable file systems

 Scan container images for possible vulnerabilities or misconfigurations

 Use a Pod Security Policy to enforce a minimum level of security

including:

 Preventing privileged containers

 Denying container features frequently exploited to breakout, such

as hostPID, hostIPC, hostNetwork, allowedHostPath

 Rejecting containers that execute as the root user or allow

elevation to root

 Hardening applications against exploitation using security services

such as SELinux®, AppArmor®, and seccomp

 Network separation and hardening

 Lock down access to control plane nodes using a firewall and role-based

access control (RBAC)

 Further limit access to the Kubernetes etcd server

 Configure control plane components to use authenticated, encrypted

communications using Transport Layer Security (TLS) certificates

 Set up network policies to isolate resources. Pods and services in different

namespaces can still communicate with each other unless additional

separation is enforced, such as network policies

 Place all credentials and sensitive information in Kubernetes Secrets

rather than in configuration files. Encrypt Secrets using a strong

encryption method

 Authentication and authorization

 Disable anonymous login (enabled by default)

 Use strong user authentication

 Create RBAC policies to limit administrator, user, and service account

activity

 Log auditing

 Enable audit logging (disabled by default)

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 3

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 Persist logs to ensure availability in the case of node, Pod, or container

level failure

 Configure a metrics logger

 Upgrading and application security practices

 Immediately apply security patches and updates

 Perform periodic vulnerability scans and penetration tests

 Remove components from the environment when they are no longer

needed

Architectural overview

Kubernetes uses a cluster architecture. A Kubernetes cluster is comprised of a number

of control planes and one or more physical or virtual machines called worker nodes. The

worker nodes host Pods, which contain one or more containers. The container is the

executable image that contains a software package and all its dependencies. See

Figure 2: Kubernetes architecture.

Figure 2: Kubernetes architecture1

The control plane makes decisions about the cluster. This includes scheduling

containers to run, detecting/responding to failures, and starting new Pods when the

1 Kubernetes Components by SupriyaSurbi and Fale used under CC BY 4.0

https://kig.k8s.io/website/static/images/docs/components-of-kubernetes.png
https://github.com/SupriyaSirbi
https://github.com/Fale
https://github.com/kubernetes/website/blob/master/LICENSE

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 4

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

number of replicas listed in a deployment file is unsatisfied. The following logical

components are all part of the control plane:

 Controller manager (Default Port: 10252) - monitors the Kubernetes cluster to

detect and maintain several aspects of the Kubernetes environment including

joining Pods to services, maintaining the correct number of Pods in a set, and

responding to the loss of nodes.

 Cloud controller manager (Default Port: 10258) - an optional component used

for cloud-based deployments. The cloud controller interfaces with the Cloud

Service Provider to manage load balancers and virtual networking for the cluster.

 Kubernetes Application Programing Interface (API) Server (Default Port:

6443 or 8080) - the interface through which administrators direct Kubernetes. As

such, the API server is typically exposed outside of the control plane. The API

Server is designed to scale and may exist on multiple control plane nodes.

 Etcd® (Default Port Range: 2379-2380) - the persistent backing store where all

information regarding the state of the cluster is kept. Etcd is not intended to be

manipulated directly but should be managed through the API Server.

 Scheduler (Default Port: 10251) - tracks the status of worker nodes and

determines where to run Pods. Kube-scheduler is intended to be accessible only

from nodes within the control plane.

Kubernetes worker nodes are physical or virtual machines dedicated to running

containerized applications for the cluster. In addition to running a container engine,

worker nodes host the following two services that allow orchestration from the control

plane:

 Kubelet (Default Port: 10251) - runs on each worker node to orchestrate and

verify Pod execution.

 Kube-proxy - a network proxy that uses the host’s packet filtering capability to

ensure correct packet routing in the Kubernetes cluster.

Clusters are commonly hosted using a cloud service provider (CSP) Kubernetes service

or on-premises. When designing a Kubernetes environment, organizations should

understand their responsibilities in securely maintaining the cluster. CSPs administer

most aspects of managed Kubernetes services, but the organization may need to

handle some aspects, such as authentication and authorization.

▲Return to Contents

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 5

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Threat model

Kubernetes can be a valuable target for data and/or compute power theft. While data

theft is traditionally the primary motivation, cyber actors seeking computational power

(often for cryptocurrency mining) are also drawn to Kubernetes to harness the

underlying infrastructure. In addition to resource theft, cyber actors may also target

Kubernetes to cause a denial of service. The following threats represent some of the

most likely sources of compromise for a Kubernetes cluster:

 Supply Chain Risk - Attack vectors to the supply chain are diverse and

challenging to mitigate. Supply chain risk is the risk that an adversary may

subvert any element that makes up a system, including product components,

services, or personnel that help supply the end product. This can include third-

party software and vendors used to create and manage the Kubernetes cluster.

Supply chain compromises can affect Kubernetes at multiple levels including:

 Container/Application level - The security of applications running in

Kubernetes and their third-party dependencies relies on the

trustworthiness of the developers and the defense of the development

infrastructure. A malicious container or application from a third party could

provide cyber actors with a foothold in the cluster.

 Infrastructure - The underlying systems hosting Kubernetes have their

own software and hardware dependencies. Any compromise of systems

used as worker nodes or as part of the control plane could provide cyber

actors with a foothold in the cluster.

 Malicious Threat Actor - Malicious actors often exploit vulnerabilities to gain

access from a remote location. Kubernetes architecture exposes several APIs

that cyber actors could potentially leverage for remote exploitation.

 Control plane - The Kubernetes control plane has a variety of components

that communicate to track and manage the cluster. Cyber actors

frequently take advantage of exposed control plane components lacking

appropriate access controls.

 Worker nodes - In addition to running a container engine, worker nodes

host the kubelet and kube-proxy service, which are potentially exploitable

by cyber actors. Additionally, worker nodes exist outside of the locked-

down control plane and may be more accessible to cyber actors.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 6

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 Containerized applications - Applications running inside the cluster are

common targets. Applications are frequently accessible outside of the

cluster, making them reachable by remote cyber actors. An actor can then

pivot from an already compromised Pod or escalate privileges within the

cluster using an exposed application’s internally accessible resources.

 Insider Threat - Threat actors can exploit vulnerabilities or use privileges given

to the individual while working within the organization. Individuals from within the

organization are given special knowledge and privileges that can be used against

Kubernetes clusters.

 Administrator - Kubernetes administrators have control over running

containers, including the ability to execute arbitrary commands inside

containerized environments. Kubernetes-enforced RBAC authorization

can help reduce the risk by restricting access to sensitive capabilities.

However, because Kubernetes lacks two-person integrity controls, there

must be at least one administrative account capable of gaining control of

the cluster. Administrators often have physical access to the systems or

hypervisors, which could also be used to compromise the Kubernetes

environment.

 User - Containerized application users may have knowledge and

credentials to access containerized services in the Kubernetes cluster.

This level of access could provide sufficient means to exploit either the

application itself or other cluster components.

 Cloud Service or Infrastructure Provider - Access to physical systems or

hypervisors managing Kubernetes nodes could be used to compromise a

Kubernetes environment. Cloud Service Providers often have layers of

technical and administrative controls to protect systems from privileged

administrators.

▲Return to Contents

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 7

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Kubernetes Pod security

Pods are the smallest deployable Kubernetes unit and consist of one or more

containers. Pods are often a cyber actor’s initial execution environment upon exploiting

a container. For this reason, Pods should be hardened to make exploitation more

difficult and to limit the impact of a successful compromise.

Figure 3: Pod components with sidecar proxy as logging container

“Non-root” containers and “rootless” container engines

By default, many container services run as the privileged root user, and applications

execute inside the container as root despite not requiring privileged execution.

Preventing root execution by using non-root containers or a rootless container engine

limits the impact of a container compromise. Both of these methods affect the runtime

environment significantly, so applications should be thoroughly tested to ensure

compatibility.

Non-root containers: container engines allow containers to run applications as a

non-root user with non-root group membership. Typically, this non-default setting is

configured when the container image is built. Appendix A: Example Dockerfile for

non-root application shows an example Dockerfile that runs an application as a

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 8

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

non-root user. Alternatively, Kubernetes can load containers into a Pod with

SecurityContext:runAsUser specifying a non-zero user. While the runAsUser

directive effectively forces non-root execution at deployment, NSA and CISA

encourage developers to build container applications to execute as a non-root user.

Having non-root execution integrated at build time provides better assurance that

applications will function correctly without root privileges.

Rootless container engines: some container engines can run in an unprivileged

context rather than using a daemon running as root. In this scenario, execution

would appear to use the root user from the containerized application’s perspective,

but execution is remapped to the engine’s user context on the host. While rootless

container engines add an effective layer of security, many are currently released as

experimental and should not be used in a production environment. Administrators

should be aware of this emerging technology and seek adoption of rootless

container engines when vendors release a stable version compatible with

Kubernetes.

Immutable container file systems

By default, containers are permitted mostly unrestricted execution within their own

context. A cyber actor who has gained execution in a container can create files,

download scripts, and modify the application within the container. Kubernetes can lock

down a container’s file system, thereby preventing many post-exploitation activities.

However, these limitations also affect legitimate container applications and can

potentially result in crashes or anomalous behavior. To prevent damaging legitimate

applications, Kubernetes administrators can mount secondary read/write file systems for

specific directories where applications require write access. Appendix B: Example

deployment template for read-only filesystem shows an example immutable

container with a writable directory.

Building secure container images

Container images are usually created by either building a container from scratch or by

building on top of an existing image pulled from a repository. In addition to using trusted

repositories to build containers, image scanning is key to ensuring deployed containers

are secure. Throughout the container build workflow, images should be scanned to

identify outdated libraries, known vulnerabilities, or misconfigurations, such as insecure

ports or permissions.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 9

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Figure 4: A container build workflow, optimized with webhook and admission controller

One approach to implementing image scanning is by using an admission controller. An

admission controller is a Kubernetes-native feature that can intercept and process

requests to the Kubernetes API prior to persistence of the object, but after the request is

authenticated and authorized. A custom or proprietary webhook can be implemented to

scan any image before it is deployed in the cluster. This admission controller could

block deployments if the image doesn’t comply with the organization’s security policies

defined in the webhook configuration [4].

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 10

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Pod Security Policies

A Pod Security Policy (PSP) is a cluster-wide policy that specifies security

requirements/defaults for Pods to execute within the cluster. While security mechanisms

are often specified within Pod/deployment configurations, PSPs establish a minimum

security threshold to which all Pods must adhere.

Some PSP fields provide default values used when a

Pod’s configuration omits a field. Other PSP fields are

used to deny the creation of non-conformant Pods.

PSPs are enforced through a Kubernetes admission

controller, so PSPs can only enforce requirements

during Pod creation. PSPs do not affect Pods already running in the cluster.

PSPs are useful technical controls to enforce security measures in the cluster. PSPs

are particularly effective for clusters managed by admins with tiered roles. In these

cases, top-level admins can impose defaults to enforce requirements on lower-level

admins. NSA and CISA encourage organizations to adapt the Kubernetes hardened

PSP template in Appendix C: Example Pod Security Policy to their needs. The

following table describes some widely applicable PSP components.

Table I: Pod Security Policy components2

Field Name(s) Usage Recommendations

privileged
Controls whether Pods can run
privileged containers.

Set to false.

hostPID, hostIPC
Controls whether containers can
share host process namespaces.

Set to false.

hostNetwork Controls whether containers can
use the host network.

Set to false.

allowedHostPaths Limits containers to specific paths
of the host file system.

Use a “dummy” path name (such
as “/foo” marked as read-only).
Omitting this field results in no
admission restrictions being placed
on containers.

readOnlyRootFilesystem Requires the use of a read only
root file system.

Set to true when possible.

runAsUser, runAsGroup,
supplementalGroups,
fsGroup

Controls whether container
applications can run with root
privileges or with root group
membership.

- Set runAsUser to
MustRunAsNonRoot.
- Set runAsGroup to non-zero (See
the example in Appendix C:
Example Pod Security Policy).

2 https://kubernetes.io/docs/concepts/policy/pod-security-policy

Pod creation adheres

to the least restrictive

authorized policy.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 11

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Field Name(s) Usage Recommendations

- Set supplementalGroups to non-
zero (see example in appendix C).
- Set fsGroup to non-zero (See the
example in Appendix C: Example
Pod Security Policy).

allowPrivilegeEscalation Restricts escalation to root
privileges.

Set to false. This measure is
required to effectively enforce
“runAsUser: MustRunAsNonRoot”
settings.

seLinux Sets the SELinux context of the
container.

If the environment supports
SELinux, consider adding SELinux
labeling to further harden the
container.

AppArmor annotations Sets the AppArmor profile used by
containers.

Where possible, harden
containerized applications by
employing AppArmor to constrain
exploitation.

seccomp annotations Sets the seccomp profile used to
sandbox containers.

Where possible, use a seccomp
auditing profile to identify required
syscalls for running applications;
then enable a seccomp profile to
block all other syscalls.

Note: PSPs do not automatically apply to the entire cluster for the following reasons:

 First, before PSPs can be applied, the PodSecurityPolicy plugin must be enabled

for the Kubernetes admission controller, part of kube-apiserver.

 Second, the policy must be authorized through RBAC. Administrators should

verify the correct functionality of implemented PSPs from each role within their

cluster’s organization.

Administrators should be cautious in environments with multiple PSPs as Pod creation

adheres to the least restrictive authorized policy. The following command describes all

Pod Security Policies for the given namespace, which can help to identify problematic

overlapping policies:

kubectl get psp -n <namespace>

Protecting Pod service account tokens

By default, Kubernetes automatically provisions a service account when creating a Pod

and mounts the account’s secret token within the Pod at runtime. Many containerized

applications do not require direct access to the service account as Kubernetes

orchestration occurs transparently in the background. If an application is compromised,

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 12

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

account tokens in Pods can be gleaned by cyber actors and used to further compromise

the cluster. When an application does not need to access the service account directly,

Kubernetes administrators should ensure that Pod specifications disable the secret

token being mounted. This can be accomplished using the

“automountServiceAccountToken: false” directive in the Pod’s YAML

specification.

Hardening container engines

Some platforms and container engines provide additional options to harden the

containerized environments. A powerful example is the use of hypervisors to provide

container isolation. Hypervisors rely on hardware to enforce the virtualization boundary

rather than the operating system. Hypervisor isolation is more secure than traditional

container isolation. Container engines running on the Windows® operating system can

be configured to use the built-in Windows hypervisor, Hyper-V®, to enhance security.

Additionally, some security focused container engines natively deploy each container

within a lightweight hypervisor for defense-in-depth. Hypervisor-backed containers

mitigate container breakouts.

▲Return to Contents

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 13

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Network separation and hardening

Cluster networking is a central concept of Kubernetes. Communication between

containers, Pods, services, and external services must be taken into consideration. By

default, there are few network policies in place to separate resources and prevent

lateral movement or escalation if a cluster is compromised. Resource separation and

encryption can be an effective way to limit a cyber actor’s movement and escalation

within a cluster.

Namespaces

Kubernetes namespaces are one way to partition cluster resources among multiple

individuals, teams, or applications within the same cluster. By default, namespaces are

not automatically isolated. However, namespaces do assign a label to a scope, which

can be used to specify authorization rules via RBAC and networking policies. In addition

to network isolation, policies can limit storage and compute resources to provide better

control over Pods at the namespace level.

There are three namespaces by default, and they cannot be deleted:

 kube-system (for Kubernetes components)

 kube-public (for public resources)

 default (for user resources)

User Pods should not be placed in kube-system or kube-public, as these are reserved

for cluster services. A YAML file, shown in Appendix D: Example namespace, can be

used to create new namespaces. Pods and services in different namespaces can still

communicate with each other unless additional separation is enforced, such as network

policies.

Key points

 Use network policies and firewalls to separate and isolate resources.

 Secure the control plane.

 Encrypt traffic and sensitive data (such as Secrets) at rest.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 14

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Network policies

Network policies control traffic flow between Pods, namespaces, and external IP

addresses. By default, no network policies are applied to Pods or namespaces,

resulting in unrestricted ingress and egress traffic

within the Pod network. Pods become isolated

through a network policy that applies to the Pod or

the Pod’s namespace. Once a Pod is selected in a

network policy, it rejects any connections that are

not specifically allowed by any applicable policy

object.

To create network policies, a network plugin that

supports the NetworkPolicy API is required. Pods

are selected using the podSelector and/or the

namespaceSelector options. An example

network policy is shown in Appendix E: Example

network policy. Network policy formatting may

differ depending on the container network interface

(CNI) plugin used for the cluster. Administrators should use a default policy selecting all

Pods to deny all ingress and egress traffic and ensure any unselected Pods are

isolated. Additional policies could then relax these restrictions for permissible

connections.

External IP addresses can be used in ingress and egress policies using ipBlock, but

different CNI plugins, cloud providers, or service implementations may affect the order

of NetworkPolicy processing and the rewriting of addresses within the cluster.

Resource policies

In addition to network policies, LimitRange and ResourceQuota are two policies that can

limit resource usage for namespaces or nodes. A LimitRange policy constrains

individual resources per Pod or container within a particular namespace, e.g., by

enforcing maximum compute and storage resources. Only one LimitRange constraint

can be created per namespace as shown in the example YAML file of Appendix F:

Example LimitRange. Kubernetes 1.10 and newer supports LimitRange by default.

Unlike LimitRange policies that apply to each Pod or container individually,

ResourceQuotas are restrictions placed on the aggregate resource usage for an entire

Network Policies Checklist

 Use CNI plugin that supports

NetworkPolicy API

 Create policies that select Pods using

podSelector and/or the

namespaceSelector

 Use a default policy to deny all ingress

and egress traffic. Ensures unselected

Pods are isolated to all namespaces

except kube-system

 Use LimitRange and ResourceQuota

policies to limit resources on a

namespace or Pod level

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 15

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

namespace, such as limits placed on total CPU and memory usage. If a user tries to

create a Pod that violates a LimitRange or ResourceQuota policy, the Pod creation fails.

An example ResourceQuota policy is shown in Appendix G: Example

ResourceQuota.

Control plane hardening

The control plane is the core of Kubernetes and gives

users the ability to view containers, schedule new Pods,

read Secrets, and execute commands in the cluster.

Because of these sensitive capabilities, the control

plane should be highly protected. In addition to secure

configurations such as TLS encryption, RBAC, and a

strong authentication method, network separation can

help prevent unauthorized users from accessing the

control plane. The Kubernetes API server runs on ports

6443 and 8080, which should be protected by a firewall

to accept only expected traffic. Port 8080, by default, is

accessible without TLS encryption from the local

machine, and the request bypasses authentication and authorization modules. The

insecure port can be disabled using the API server flag --insecure-port=0. The

Kubernetes API server should not be exposed to the Internet or an untrusted network.

Network policies can be applied to the kube-system namespace to limit internet access

to the kube-system. If a default deny policy is implemented to all namespaces, the

kube-system namespace must still be able to communicate with other control plane

segments and worker nodes.

The following table lists the control plane ports and services:

Table II: Control plane ports

Protocol Direction Port Range Purpose

TCP Inbound 6443 or 8080 if not disabled Kubernetes API server

TCP Inbound 2379-2380 etcd server client API

TCP Inbound 10250 kubelet API

TCP Inbound 10251 kube-scheduler

TCP Inbound 10252 kube-controller-manager

TCP Inbound 10258 cloud-controller-manager (optional)

Steps to secure the control plane

1. Set up TLS encryption

2. Set up strong authentication

methods

3. Disable access to internet and

unnecessary, or untrusted networks

4. Use RBAC policies to restrict

access

5. Secure the etcd datastore with

authentication and RBAC policies

6. Protect kubeconfig files from

unauthorized modifications

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 16

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Etcd

The etcd backend database stores state information and cluster Secrets. It is a critical

control plane component, and gaining write access to etcd could give a cyber actor root

access to the entire cluster. Etcd should only be accessed through the API server where

the cluster’s authentication method and RBAC policies can restrict users. The etcd data

store can run on a separate control plane node allowing a firewall to limit access to only

the API servers. Administrators should set

up TLS certificates to enforce HTTPS

communication between the etcd server

and API servers. The etcd server should be

configured to only trust certificates

assigned to API servers.

Kubeconfig Files

The kubeconfig files contain sensitive

information about clusters, users,

namespaces, and authentication mechanisms. Kubectl uses the configuration files

stored in the $HOME/.kube directory on the worker node and control plane local

machines. Cyber actors can exploit access to this configuration directory to gain access

to and modify configurations or credentials to further compromise the cluster. The

configuration files should be protected from unintended changes, and unauthenticated

non-root users should be blocked from accessing the files.

Worker node segmentation

A worker node can be a virtual or physical machine, depending on the cluster’s

implementation. Because nodes run the microservices and host the web applications for

the cluster, they are often the target of exploits. If a node becomes compromised, an

administrator should proactively limit the attack surface by separating the worker nodes

from other network segments that do not need to communicate with the worker nodes or

Kubernetes services. A firewall can be used to separate internal network segments from

the external facing worker nodes or the entire Kubernetes service depending on the

network. Examples of services that may need to be separated from the possible attack

surface of the worker nodes are confidential databases or internal services that would

not need to be internet accessible.

The following table lists the worker node ports and services:

The etcd backend database

is a critical control plane

component and the most

important piece to secure

within the cluster.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 17

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Table III: Worker node ports

Protocol Direction Port Range Purpose

TCP Inbound 10250 kubelet API

TCP Inbound 30000-32767 NodePort Services

Encryption

Administrators should configure all traffic in the Kubernetes cluster—including between

components, nodes, and the control plane—to use TLS 1.2 or 1.3 encryption.

Encryption can be set up during installation or afterward using TLS bootstrapping,

detailed in the Kubernetes documentation, to create and distribute certificates to nodes.

For all methods, certificates must be distributed amongst nodes to communicate

securely.

Secrets

Kubernetes Secrets maintain sensitive information, such as passwords, OAuth tokens,

and SSH keys. Storing sensitive information in Secrets provides greater access control

than storing passwords or tokens in YAML files, container images, or environment

variables. By default, Kubernetes stores Secrets as unencrypted base64-encoded

strings that can be retrieved by anyone with API access. Access can be restricted by

applying RBAC policies to the secrets resource.

Secrets can be encrypted by configuring data-at-rest encryption on the API server or by

using an external Key Management Service (KMS), which may be available through a

cloud provider. To enable Secret data-at-rest encryption using the API server,

administrators should change the kube-apiserver manifest file to execute using the

--encryption-provider-config argument. An example encryption-

provider-config file is shown in Appendix

H: Example encryption. Using a KMS

provider prevents the raw encryption key from

being stored on the local disk. To encrypt

Secrets with a KMS provider, the

encryption-provider-config file should

specify the KMS provider as shown in

Appendix I: Example KMS configuration.

By default, Secrets are

stored as unencrypted

base64-encoded strings and

can be retrieved by anyone

with API access.

https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 18

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

After applying the encryption-provider-config file, administrators should run the

following command to read and encrypt all Secrets:

kubectl get secrets --all-namespaces -o json | kubectl replace -f -

Protecting sensitive cloud infrastructure

Kubernetes is often deployed on virtual machines in a cloud environment. As such,

administrators should carefully consider the attack surface of the virtual machines on

which the Kubernetes worker nodes are running. In many cases, Pods running on these

virtual machines have access to sensitive cloud metadata services on a non-routable

address. These metadata services provide cyber actors with information about the cloud

infrastructure and possibly even short-lived credentials for cloud resources. Cyber

actors abuse these metadata services for privilege escalation [5]. Kubernetes

administrators should prevent Pods from accessing cloud metadata services by using

network policies or through the cloud configuration policy. Because these services vary

based on the cloud provider, administrators should follow vendor guidance to harden

these access vectors.

▲Return to Contents

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 19

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Authentication and authorization

Authentication and authorization are the primary mechanisms to restrict access to

cluster resources. Cyber actors can scan for well-known Kubernetes ports and access

the cluster’s database or make API calls without being authenticated if the cluster is

misconfigured. User authentication is not a built-in feature of Kubernetes. However,

several methods exist for administrators to add authentication to a cluster.

Authentication

Kubernetes clusters have two types of users: service accounts and normal user

accounts. Service accounts handle API requests on behalf of Pods. Authentication is

typically managed automatically by Kubernetes through the ServiceAccount Admission

Controller using bearer tokens. The bearer tokens are mounted into Pods at well-known

locations and can be used from outside the cluster if the tokens are left unsecured.

Because of this, access to Pod Secrets should be restricted to those with a need to view

them using Kubernetes RBAC. For normal users and admin accounts, there is no

automatic authentication method for users. Administrators must add an authentication

method to the cluster to implement authentication and authorization mechanisms.

Kubernetes assumes that a cluster-independent service manages user authentication.

The Kubernetes documentation lists several ways to implement user authentication

including client certificates, bearer tokens, authentication plugins, and other

authentication protocols. At least one user authentication method should be

implemented. When multiple authentication methods are implemented, the first module

to successfully authenticate the request

short-circuits the evaluation. Administrators

should not use weak methods such as static

password files. Weak authentication

methods could allow cyber actors to

authenticate as legitimate users.

Anonymous requests are requests that are

rejected by other configured authentication

methods and are not tied to any individual

user or Pod. In a server set up for token authentication with anonymous requests

enabled, a request without a token present would be performed as an anonymous

Administrators must add an

authentication method to

the cluster to implement

authentication and

authorization mechanisms.

https://kubernetes.io/docs/reference/access-authn-authz/authentication

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 20

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

request. In Kubernetes 1.6 and newer, anonymous requests are enabled by default.

When RBAC is enabled, anonymous requests require explicit authorization of the

system:anonymous user or system:unauthenticated group. Anonymous

requests should be disabled by passing the --anonymous-auth=false option to the

API server. Leaving anonymous requests enabled could allow a cyber actor to access

cluster resources without authentication.

Role-based access control

RBAC is one method to control access to cluster resources based on the roles of

individuals within an organization. RBAC is enabled by default in Kubernetes version

1.6 and newer. To check if RBAC is enabled in a cluster using kubectl, execute

kubectl api-version. The API version for .rbac.authorization.k8s.io/v1

should be listed if enabled. Cloud Kubernetes services may have a different way of

checking whether RBAC is enabled for the cluster. If RBAC is not enabled, start the API

server with the --authorization-mode flag in the following command:

kube-apiserver --authorization-mode=RBAC

Leaving authorization-mode flags, such as AlwaysAllow, in place allows all

authorization requests, effectively disabling all authorization and limiting the ability to

enforce least privilege for access.

Two types of permissions can be set: Roles and ClusterRoles. Roles set permissions

for particular namespaces, whereas ClusterRoles set permissions across all cluster

resources regardless of namespace. Roles and ClusterRoles can only be used to add

permissions. There are no deny rules. If a cluster is configured to use RBAC and

anonymous access is disabled, the Kubernetes API server will deny permissions not

explicitly allowed. An example RBAC Role is shown in Appendix J: Example pod-

reader RBAC Role.

A Role or ClusterRole defines a permission but does not tie the permission to a user.

RoleBindings and ClusterRoleBindings are used to tie a Role or ClusterRole to a user,

group, or service account. RoleBindings grant permissions in Roles or ClusterRoles to

users, groups, or service accounts in a defined namespace. ClusterRoles are created

independent of namespaces and can then be granted to individuals using a RoleBinding

to limit the namespace scope. ClusterRoleBindings grant users, groups, or service

accounts ClusterRoles across all cluster resources. An example RBAC RoleBinding and

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 21

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

ClusterRoleBinding is shown in Appendix K: Example RBAC RoleBinding and

ClusterRoleBinding.

To create or update Roles and ClusterRoles, a user must have the permissions

contained in the new role at the same scope or possess explicit permission to perform

the escalate verb on the Roles or ClusterRoles resources in the

rbac.authorization.k8s.io API group. After a binding is created, the Role or

ClusterRole is immutable. The binding must be deleted to change a role.

Privileges assigned to users, groups, and service accounts should follow the principle of

least privilege, giving only required permissions to resources. Users or user groups can

be limited to particular namespaces where required resources reside. By default, a

service account is created for each namespace for Pods to access the Kubernetes API.

RBAC policies can be used to specify allowed actions from the service accounts in each

namespace. Access to the Kubernetes API is limited by creating an RBAC Role or

ClusterRole with the appropriate API request verb and desired resource on which the

action can be applied. Tools exist that can help audit RBAC policies by printing users,

groups, and service accounts with their associated assigned Roles and ClusterRoles.

▲Return to Contents

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 22

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Log auditing

Logs capture activity in the cluster. Auditing logs is necessary, not only for ensuring that

services are operating and configured as intended, but also for ensuring the security of

the system. Systematic audit requirements mandate consistent and thorough checks of

security settings to help identify compromises. Kubernetes is capable of capturing audit

logs for cluster actions and monitoring basic CPU and memory usage information;

however, it does not natively provide in-depth monitoring or alerting services.

Logging

System administrators running applications within Kubernetes should establish an

effective logging, monitoring, and alerting system for their environment. Logging

Kubernetes events alone is not enough to provide a full picture of the actions occurring

on the system. Logging should also be performed at the host level, application level,

and on the cloud if applicable. These logs can then be correlated with any external

authentication and system logs as applicable to provide a full view of the actions taken

throughout the environment for use by security auditors and incident responders.

Within the Kubernetes environment, administrators should monitor/log the following:

 API request history

 Performance metrics

 Deployments

 Resource consumption

 Operating system calls

 Protocols, permission changes

 Network traffic

Key points

 Establish Pod baselines at creation to enable anomalous activity identification.

 Perform logging at the host level, application level, and on the cloud if applicable.

 Integrate existing network security tools for aggregate scans, monitoring, alerts,

and analysis.

 Set up local log storage to prevent loss in case of a communication failure.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 23

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 Pod scaling

When a Pod is created or updated, administrators should capture detailed logs of the

network communications, response times, requests, resource consumption, and any

other relevant metrics to establish a baseline. As detailed in the previous section,

anonymous accounts should be disabled, but logging policies should still record actions

taken by anonymous accounts to identify anomalous activity.

RBAC policy configurations should be audited periodically and whenever changes occur

to the organization’s system administrators. Doing so ensures access controls are

adjusted in compliance with the RBAC policy-hardening guidance outlined in the role-

based access control section.

Audits should include comparisons of current logs to the baseline measurements of

normal activities to identify significant changes in any of the logged metrics and events.

System administrators should investigate significant changes—e.g., a change in

application usage or installation of malicious processes such as a cryptominer—to

determine the root cause. Audits of internal and external traffic logs should be

conducted to ensure all intended security constraints on connections have been

configured properly and are working as intended.

Administrators can also use these audits as

systems evolve to identify when external access

may no longer be needed and can be restricted.

Logs can be streamed to an external logging

service to ensure availability to security

professionals outside of the cluster, identify

abnormalities as close to real time as possible,

and protect logs from being deleted if a

compromise occurs. If using this method, logs

should be encrypted during transit with TLS 1.2 or 1.3 to ensure cyber actors cannot

access the logs in transit and gain valuable information about the environment. Another

precaution to take when utilizing an external log server is to configure the log forwarder

within Kubernetes with append-only access to the external storage. This helps protect

the externally stored logs from being deleted or overwritten from within the cluster.

Kubernetes auditing

capabilities are

disabled by default, so

if no audit policy has

been written, nothing

is logged.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 24

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Kubernetes native audit logging configuration

The kube-apiserver resides on the Kubernetes control plane and acts as the front

end, handling internal and external requests for a cluster. Each request, whether

generated by a user, an application, or the control plane, produces an audit event at

each stage in its execution. When an audit event registers, the kube-apiserver

checks for an audit policy file and applicable rule. If such a rule exists, the server logs

the event at the level defined by the first matched rule. Kubernetes’ built-in auditing

capabilities are not enabled by default, so if no audit policy has been written, nothing is

logged.

Cluster administrators must write an audit policy YAML file to establish the rules and

specify the desired audit level at which to log each type of audit event. This audit policy

file is then passed to the kube-apiserver with the appropriate flags. For a rule to be

considered valid, it must specify one of the four audit levels: None, Metadata,

Request, or RequestResponse. Appendix L: Audit Policy shows the contents of an

audit policy file that logs all events at the RequestResponse level. Appendix M:

Example flags with which to submit Audit Policy file to kube-apiserver shows

where the kube-apiserver configuration file is located and provides an example of

the flags by which the audit policy file can be passed to the kube-apiserver.

Appendix M also provides directions for how to mount the volumes and configure the

host path if necessary.

The kube-apiserver includes configurable logging and webhook backends for audit

logging. The logging backend writes the audit events specified to a log file, and the

webhook backend can be configured to send the file to an external HTTP API. The --

audit-log-path and --audit-log-maxage flags, set in the example in Appendix

M, are two examples of the flags that can be used to configure the log backend, which

writes audit events to a file. The log-path flag is the minimum configuration required

to enable logging and the only configuration necessary for the logging backend. The

default format for these log files is JSON, though this can also be changed if necessary.

Additional configuration options for the logging backend can be found in the Kubernetes

documentation.

To push the audit logs to the organization’s SIEM platform, a webhook backend can be

manually configured via a YAML file submitted to the kube-apiserver. An example

webhook configuration file and the flags needed to pass the file to the kube-

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 25

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

apiserver to attach the webhook backend are located in Appendix N: Webhook

configuration. An exhaustive list of the configuration options, which can be set in the

kube-apiserver for the webhook backend, can be found in the Kubernetes

documentation.

Worker node and container logging

There are many ways for logging capabilities to be configured within a Kubernetes

architecture. In the built-in method of log management, the kubelet on each node is

responsible for managing logs. It stores and rotates log files locally based on its policies

for individual file length, storage duration, and storage capacity. These logs are

controlled by the kubelet and can be accessed from the command line. The following

command prints the logs of a container within a Pod:

kubectl logs [-f] [-p] POD [-c CONTAINER]

The -f flag may be used if the logs are to be streamed, the -p flag may be used if logs

from previous instances of a container exist and are desired, and the -c flag can be

used to specify a container if there are more than one in the Pod. If an error occurs that

causes a container, Pod, or node to die, the native logging solution in Kubernetes does

not provide a method to preserve logs stored in the failed object. NSA and CISA

recommend configuring a remote logging solution to preserve logs should a node fail.

Options for remote logging include:

Remote logging option Reason to use Configuration implementation

Running a logging agent on

every node to push logs to

a backend

Gives the node the ability to

expose logs or push logs to a

backend, preserving them outside

of the node in the case of a

failure.

Configure an independent container

in a Pod to run as a logging agent,

giving it access to the node’s

application log files and configuring

it to forward logs to the

organization’s SIEM.

Using a sidecar container in

each Pod to push logs to

an output stream

Used to push logs to separate

output streams. This can be a

useful option when application

containers write multiple log files

of different formats.

Configure sidecar container for

each log type and use to redirect

these log files to their individual

output streams, where they can be

handled by the kubelet. The

node-level logging agent can then

forward these logs onto the SIEM or

other backend.

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 26

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Using a logging agent

sidecar in each Pod to push

logs to a backend

When more flexibility is needed

than the node-level logging agent

can provide.

Configure for each Pod to push logs

directly to the backend. This is a

common method for attaching third-

party logging agents and backends.

Pushing logs directly to a

backend from within an

application

Capture application logs.

Kubernetes does not have built-in

mechanisms for exposing or

pushing logs to a backend

directly.

Organizations will need to either

build this functionality into their

application or attach a reputable

third-party tool to enable this.

A sidecar container is run in a Pod with other containers and can be configured to

stream logs to a log file or logging backend. A sidecar container can also be configured

to act as a traffic proxy for another standard functionality container with which it is

packaged and deployed.

In order to ensure continuity of these logging agents across worker nodes, it is common

to run them as a DaemonSet. Configuring a DaemonSet for this method ensures that

there is a copy of the logging agent on every node at all times and that any changes

made to the logging agent are consistent across the cluster.

Seccomp: audit mode

In addition to the node and container logging described above, it can be highly

beneficial to log system calls. One method for auditing container system calls in

Kubernetes is to use the Secure Compute Mode (seccomp) tool. This tool is disabled by

default but can be used to limit a container’s system call abilities, thereby lowering the

kernel’s attack surface. Seccomp can also log what calls are being made by using an

audit profile.

A custom seccomp profile is used to define which system calls are allowed and default

actions for calls not specified. To enable a custom seccomp profile within a Pod,

Kubernetes admins can write their seccomp profile JSON file to the

/var/lib/kubelet/seccomp/ directory and add a seccompProfile to the Pod’s

securityContext. A custom seccompProfile should also include two fields:

Type: Localhost and localhostProfile: myseccomppolicy.json. Logging

all system calls can help administrators know what system calls are needed for

standard operations allowing them to restrict the seccomp profile further without losing

system functionality.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 27

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

SYSLOG

Kubernetes, by default, writes kubelet logs and container runtime logs to journald if

the service is available. If organizations wish to utilize syslog utilities for systems that do

not use them by default—or to collect logs from across the cluster and forward them to

a syslog server or other log storage and aggregation platform—they can configure that

capability manually. Syslog protocol defines a log message-formatting standard. Syslog

messages include a header—consisting of a timestamp, hostname, application name,

and process ID (PID)—and a message written in plaintext. Syslog services such as

syslog-ng® and rsyslog are capable of collecting and aggregating logs from across a

system in a unified format. Many Linux operating systems by default use rsyslog or

journald—an event logging daemon, which optimizes log storage and output logs in

syslog format via journalctl. The syslog utility, on nodes running certain Linux

distributions logs events, by default, at the operating system level. Containers running

these Linux distributions will, by default, collect logs using syslog as well. The logs that

are collected by syslog utilities are stored in the local file system on each applicable

node or container unless a log aggregation platform is configured to collect them.

SIEM platforms

Security Information and Event Management (SIEM) software collects logs from across

an organization’s network. SIEM software brings together firewall logs, application logs,

and more; parsing them out to provide a centralized platform from which analysts can

monitor system security. SIEM tools have variations in their capabilities. Generally,

these platforms provide log collection, threat detection, and alerting capabilities. Some

include machine learning capabilities, which can better predict system behavior and

help to reduce false alerts. Organizations using these platforms in their environment can

integrate them with Kubernetes to better monitor and secure clusters. Open source

platforms for managing logs from a Kubernetes environment exist as an alternative to

SIEM platforms.

Containerized environments have many interdependencies between nodes, Pods,

containers, and services. In these environments, Pods and containers are constantly

being taken down and restarted on different nodes. This presents an extra challenge for

traditional SIEMs, which typically use IP addresses to correlate logs. Even next-gen

SIEM platforms may not always be suited to the complex Kubernetes environment.

However, as Kubernetes has emerged as the most widely used container orchestration

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 28

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

platform, many of the organizations developing SIEM tools have developed variations of

their products specifically designed to work with the Kubernetes environment, providing

full monitoring solutions for these containerized environments. Administrators should be

aware of their platform’s capabilities and ensure that their logging sufficiently captures

the environment to support future incident responses.

Alerting

Kubernetes does not natively support alerting; however, several monitoring tools with

alerting capabilities are compatible with Kubernetes. If Kubernetes administrators

choose to configure an alerting tool to work within a Kubernetes environment, there are

several metrics for which administrators should monitor and configure alerts.

Examples of cases that could trigger alerts include but are not limited to:

 low disk space on any of the machines in the environment,

 available storage space on a logging volume running low,

 external logging service going offline,

 a Pod or application running with root permissions,

 requests being made by an account for resources they do not have permission

for,

 an anonymous account being used or gaining privileges,

 Pod or Worker Node IP addresses being listed as the source ID of a Pod creation

request,

 unusual system calls or failed API calls,

 user/admin behavior that is abnormal (i.e. at unusual times or from an unusual

location), and

 significant deviations from the standard operation metrics baseline.

Alerting when storage is low can help avoid performance issues and log loss due to

limited resources and help identify malicious cryptojacking attempts. Cases of privileged

Pod execution can be investigated to determine if an administrator made a mistake, an

authentic use case necessitates escalated privileges, or a malicious actor deployed a

privileged Pod. Suspicious Pod creation source IP addresses could indicate that a

malicious cyber actor has broken out of a container and is attempting to create a

malicious Pod.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 29

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Integrating Kubernetes with an organization’s existing SIEM platform, especially those

with machine learning/big data capabilities, can be useful in identifying irregularities in

audit logs and cutting down on false alerts. If configuring such a tool to work with

Kubernetes, it should be configured so that these cases and any others applicable to

the use case are configured to trigger alerts.

Systems capable of acting automatically when suspected intrusions occur could

potentially be configured to take steps to mitigate compromises while administrators

respond to alerts. In the case of a Pod IP being listed as the source ID of a Pod creation

request, one mitigation that could be implemented to keep the application available but

temporarily stop any compromises of the cluster would be to automatically evict the

Pod. Doing so would allow a clean version of the Pod to be rescheduled onto one of the

nodes. Investigators can then examine the logs to determine if a breach occurred and, if

so, how the malicious actors executed the compromise so that a patch can be

deployed.

Service meshes

Service meshes are platforms that streamline microservice communications within an

application by allowing for the logic of these communications to be coded into the

service mesh rather than within each microservice. Coding this communication logic into

individual microservices is difficult to scale, difficult to debug as failures occur, and

difficult to secure. Using a service mesh can simplify this for developers. The mesh can:

 redirect traffic when a service is down,

 gather performance metrics for optimizing communications,

 allow management of service-to-service communication encryption,

 collect logs for service-to-service communication,

 collect logs from each service, and

 help developers diagnose problems and failures of microservices or

communication mechanisms.

Service meshes can also help with migrating services to hybrid or multi-cloud

environments. While service meshes are not necessary, they are an option that is highly

suitable to the Kubernetes environment. Managed Kubernetes services often include

their own service mesh. However, several other platforms are also available and, if

desired, are highly customizable. Some of these include a Certificate Authority that

generates and rotates certificates, allowing for secure TLS authentication between

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 30

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

services. Administrators should consider using service meshes to harden Kubernetes

cluster security.

Figure 5: Cluster leveraging service mesh to integrate logging with network security

Fault tolerance

Fault tolerance policies should be put in place to ensure logging service availability.

These policies could differ depending on the specific Kubernetes use case. One policy

that can be put in place is to allow new logs to overwrite the oldest log files if absolutely

necessary in the event of storage capacity being exceeded.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 31

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

If logs are being sent to an external service, a mechanism should be in place for logs to

be stored locally if a communication loss or external service failure occurs. Once

communication to the external service is restored, a policy should be in place for the

locally stored logs to be pushed up to the external server.

Tools

Kubernetes does not include extensive auditing capabilities. However, the system is

built to be extensible, allowing users the freedom to develop their own custom solution

or to choose an existing add-on that suits their needs. One of the most common

solutions is to add additional audit backend services, which can use the information

logged by Kubernetes and perform additional functions for users, such as extended

search parameters, data mapping features, and alerting functionality. Organizations that

already use SIEM platforms can integrate Kubernetes with these existing capabilities.

Open-source monitoring tools—such as the Cloud Native Computing Foundation’s

Prometheus®, Grafana Labs’ Grafana®, and Elasticsearch’s Elastic Stack (ELK)®—are

available to conduct event monitoring, run threat analytics, manage alerting, and collect

resource isolation parameters, historical usage, and network statistics on running

containers. Scanning tools can be useful when auditing the access control and

permission configurations by assisting in identifying risky permission configurations in

RBAC. NSA and CISA encourage organizations utilizing Intrusion Detection Systems

(IDSs) on their existing environment to consider integrating that service into their

Kubernetes environment as well. This integration would allow an organization to monitor

for—and potentially kill containers showing signs of—unusual behavior so the

containers can be restarted from the initial clean image. Many cloud service providers

also provide container monitoring services for those wanting more managed and

scalable solutions.

▲Return to Contents

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 32

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Upgrading and application security practices

Following the hardening guidance outlined in this document is a step toward ensuring

the security of applications running on Kubernetes orchestrated containers. However,

security is an ongoing process, and it is vital to keep up with patches, updates, and

upgrades. The specific software components vary depending on the individual

configuration, but each piece of the overall system should be kept as secure as

possible. This includes updating: Kubernetes, hypervisors, virtualization software,

plugins, operating systems on which the environment is running, applications running on

the servers, and any other software hosted in the Kubernetes environment.

The Center for Internet Security (CIS) publishes benchmarks for securing software.

Administrators should adhere to the CIS benchmarks for Kubernetes and any other

relevant system components. Administrators should check periodically to ensure their

system's security is compliant with the current security experts’ consensus on best

practices. Periodic vulnerability scans and penetration tests should be performed on the

various system components to proactively look for insecure configurations and zero-day

vulnerabilities. Any discoveries should be promptly remediated before potential cyber

actors can discover and exploit them.

As updates are deployed, administrators should also keep up with removing any old

components that are no longer needed from the environment. Using a managed

Kubernetes service can help to automate upgrades and patches for Kubernetes,

operating systems, and networking protocols. However, administrators must still patch

and upgrade their containerized applications.

▲Return to Contents

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 33

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Works cited

[1] Center for Internet Security, "Kubernetes," 2021. [Online]. Available:

https://cisecurity.org/resources/?type=benchmark&search=kubernetes.

[2] DISA, "Kubernetes STIG," 2021. [Online]. Available: https://dl.dod.cyber.mil.wp-

content/uploads/stigs/zip/U_Kubernetes_V1R1_STIG.zip. [Accessed 8 July 2021]

[3] The Linux Foundation, "Kubernetes Documentation," 2021. [Online]. Available:

https://kubernetes.io/docs/home/. [Accessed 8 July 2021].

[4] The Linux Foundation, "11 Ways (Not) to Get Hacked," 18 07 2018. [Online].

Available: https://kubernetes.io/blog/2018/07/18/11-ways-not-to-get-hacked/#10-

scan-images-and-run-ids. [Accessed 8 July 2021].

[5] MITRE, "Unsecured Credentials: Cloud Instance Metadata API." MITRE ATT&CK,

2021. [Online]. Available: https://attack.mitre.org/techniques/T1552/005/. [Accessed

8 July 2021].

[6] CISA, "Analysis Report (AR21-013A): Strengthening Security Configurations to

Defend Against Attackers Targeting Cloud Services." Cybersecurity and

Infrastructure Security Agency, 14 January 2021. [Online]. Available:https://us-

cert.cisa.gov/ncas/analysis-reports/ar21-013a [Accessed 8 July 2021].

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 34

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix A: Example Dockerfile for non-root application
The following example is a Dockerfile that runs an application as a non-root user with

non-group membership. The lines highlighted in red below are the portion specific to

using non-root.

FROM ubuntu:latest

#Update and install the make utility

RUN apt update && apt install -y make

#Copy the source from a folder called “code” and build the application with

the make utility

COPY . /code

RUN make /code

#Create a new user (user1) and new group (group1); then switch into that

user’s context

RUN useradd user1 && groupadd group1

USER user1:group1

#Set the default entrypoint for the container

CMD /code/app

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 35

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix B: Example deployment template for read-only file

systemfilesystem
The following is an example Kubernetes deployment template that uses a read-only root

file system. The lines highlighted in red below are the portion specific to making the

container’s filesystem read-only. The lines highlighted in blue are the portion showing

how to create a writeable volume for applications requiring this capability.

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: web

 name: web

spec:

 selector:

 matchLabels:

 app: web

 template:

 metadata:

 labels:

 app: web

 name: web

 spec:

 containers:

 - command: ["sleep"]

 args: ["999"]

 image: ubuntu:latest

 name: web

 securityContext:

 readOnlyRootFilesystem: true

 volumeMounts:

 - mountPath: /writeable/location/here

 name: volName

 volumes:

 - emptyDir: {}

 name: volName

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 36

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix C: Example Pod Security Policy
The following is an example Kubernetes Pod Security Policy that enforces strong

security requirements for containers running in the cluster. This example is based on

official Kubernetes documentation: https://kubernetes.io/docs/concepts/policy/pod-

security-policy/. Administrators are encouraged to tailor the policy to meet their

organization’s requirements.

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: restricted

 annotations:

 seccomp.security.alpha.kubernetes.io/allowedProfileNames:

'docker/default,runtime/default'

 apparmor.security.beta.kubernetes.io/allowedProfileNames:

'runtime/default'

 seccomp.security.alpha.kubernetes.io/defaultProfileName:

'runtime/default'

 apparmor.security.beta.kubernetes.io/defaultProfileName:

'runtime/default'

spec:

 privileged: false # Required to prevent escalations to root.

 allowPrivilegeEscalation: false

 requiredDropCapabilities:

 - ALL

 volumes:

 - 'configMap'

 - 'emptyDir'

 - 'projected'

 - 'secret'

 - 'downwardAPI'

 - 'persistentVolumeClaim' # Assume persistentVolumes set up by admin

are safe

 hostNetwork: false

 hostIPC: false

 hostPID: false

 runAsUser:

 rule: 'MustRunAsNonRoot' # Require the container to run without root

 seLinux:

 rule: 'RunAsAny' # This assumes nodes are using AppArmor rather than

SELinux

 supplementalGroups:

 rule: 'MustRunAs'

 ranges: # Forbid adding the root group.

 - min: 1

 max: 65535

 runAsGroup:

 rule: 'MustRunAs'

 ranges: # Forbid adding the root group.

 - min: 1

 max: 65535

 fsGroup:

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 37

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 rule: 'MustRunAs'

 ranges: # Forbid adding the root group.

 - min: 1

 max: 65535

 readOnlyRootFilesystem: true

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 38

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix D: Example namespace
The following example is for each team or group of users, a Kubernetes namespace

can be created using either a kubectl command or YAML file. Any name with the

prefix kube- should be avoided as it may conflict with Kubernetes system reserved

namespaces.

Kubectl command to create a namespace:

kubectl create namespace <insert-namespace-name-here>

To create namespace using YAML file, create a new file called my-namespace.yaml

with the contents:

apiVersion: v1

kind: Namespace

metadata:

 name: <insert-namespace-name-here>

Apply the namespace using:

kubectl create –f ./my-namespace.yaml

To create new Pods in an existing namespace, switch to the desired namespace using:

kubectl config use-context <insert-namespace-here>

Apply new deployment using:

kubectl apply -f deployment.yaml

Alternatively, the namespace can be added to the kubectl command using:

kubectl apply -f deployment.yaml --namespace=<insert-namespace-here>

or specify namespace: <insert-namespace-here> under metadata in the YAML

declaration.

Once created, resources cannot be moved between namespaces. The resource must

be deleted, then created in the new namespace.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 39

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix E: Example network policy
Network policies differ depending on the network plugin used. The following is an

example network policy to limit access to the nginx service to Pods with the label

access using the Kubernetes documentation:

https://kubernetes.io/docs/tasks/administer-cluster/declare-network-policy/

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: example-access-nginx

 namespace: prod #this can any namespace or be left out if no

namespace is used

spec:

 podSelector:

 matchLabels:

 app: nginx

 ingress:

 -from:

 -podSelector:

 matchLabels:

 access: “true”

The new NetworkPolicy can be applied using:

kubectl apply -f policy.yaml

A default deny all ingress policy:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: deny-all-ingress

spec:

 podSelector: {}

 policyType:

 - Ingress

A default deny all egress policy:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: deny-all-egress

spec:

 podSelector: {}

 policyType:

 - Egress

https://kubernetes.io/docs/tasks/administer-cluster/declare-network-policy/

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 40

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix F: Example LimitRange
LimitRange support is enabled by default in Kubernetes 1.10 and newer. The following

YAML file specifies a LimitRange with a default request and limit, as well as a min and

max request, for each container.

apiVersion: v1

kind: LimitRange

metadata:

 name: cpu-min-max-demo-lr

spec:

 limits

 - default:

 cpu: 1

 defaultRequest:

 cpu: 0.5

 max:

 cpu: 2

 min:

 cpu 0.5

 type: Container

A LimitRange can be applied to a namespace with:

kubectl apply -f <example-LimitRange>.yaml --namespace=<Enter-Namespace>

After this example LimitRange configuration is applied, all containers created in the

namespace are assigned the default CPU request and limit if not specified. All

containers in the namespace must have a CPU request greater than or equal to the

minimum value and less than or equal to the maximum CPU value or the container will

not be instantiated.

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 41

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix G: Example ResourceQuota
ResourceQuota objects to limit aggregate resource usage within a namespace are

created by applying a YAML file to a namespace or specifying requirements in the

configuration file of Pods. The following example is based on official Kubernetes

documentation: https://kubernetes.io/docs/tasks/administer-cluster/manage-

resources/quota-memory-cpu-namespace/

Configuration file for a namespace:

apiVersion: v1

kind: ResourceQuota

metadata:

 name: example-cpu-mem-resourcequota

spec:

 hard:

 requests.cpu: “1”

 requests.memory: 1Gi

 limits.cpu: “2”

 limits.memory: 2Gi

This ResourceQuota can be applied with:

kubectl apply -f example-cpu-mem-resourcequota.yaml --

namespace=<insert-namespace-here>

This ResourceQuota places the following constraints on the chosen namespace:

 Every container must have a memory request, memory limit, CPU request, and

CPU limit

 Aggregate memory request for all containers should not exceed 1 GiB

 Total memory limit for all containers should not exceed 2 GiB

 Aggregate CPU request for all containers should not exceed 1 CPU

 Total CPU limit for all containers should not exceed 2 CPUs

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/quota-memory-cpu-namespace/
https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/quota-memory-cpu-namespace/

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 42

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix H: Example encryption
To encrypt Secret data at rest, the following encryption configuration file provides an

example to specify the type of encryption desired and the encryption key. Storing the

encryption key in the encryption file only slightly improves security. The Secrets will be

encrypted, but the key will be accessible in the EncryptionConfiguration file. This

example is based on official Kubernetes documentation:

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/.

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

 - resources:

 - secrets

 providers:

 - aescbc:

 keys:

 - name: key1

 secret: <base 64 encoded secret>

 - identity: {}

To enable encryption at rest with this encryption file, restart the API server with the --encryption-

provider-config flag set with the location to the configuration file.

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 43

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix I: Example KMS configuration
To encrypt Secrets with a Key Management Service (KMS) provider plugin, the

following example encryption configuration YAML file can be used to set the properties

for the provider. This example is based on official Kubernetes documentation:

https://kubernetes.io/docs/tasks/administer-cluster/kms-provider/.

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

 - resources:

 - secrets

 providers:

 - kms:

 name: myKMSPlugin

 endpoint: unix://tmp/socketfile.sock

 cachesize: 100

 timeout: 3s

 - identity: {}

To configure the API server to use the KMS provider, set the --encryption-

provider-config flag with the location of the configuration file and restart the API

server.

To switch from a local encryption provider to KMS, add the KMS provider section of the

EncryptionConfiguration file above the current encryption method, as shown below.

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

 - resources:

 - secrets

 providers:

 - kms:

 name: myKMSPlugin

 endpoint: unix://tmp/socketfile.sock

 cachesize: 100

 timeout: 3s

 - aescbc:

 keys:

 - name: key1

 secret: <base64 encoded secret>

Restart the API server and run the command below to re-encrypt all Secrets with the

KMS provider.

https://kubernetes.io/docs/tasks/administer-cluster/kms-provider/

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 44

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

kubectl get secrets --all-namespaces -o json | kubectl replace -f -

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 45

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix J: Example pod-reader RBAC Role
To create a pod-reader Role, create a YAML file with the following contents:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: your-namespace-name

 name: pod-reader

rules:

- apiGroups: [“”] # “” indicates the core API group

 resources: [“pods”]

 verbs: [“get”, “watch”, “list”]

Apply the Role using:

kubectl apply --f role.yaml

To create a global-pod-reader ClusterRole:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata: default

 # “namespace” omitted since ClusterRoles are not bound to a

namespace

 name: global-pod-reader

rules:

- apiGroups: [“”] # “” indicates the core API group

 resources: [“pods”]

 verbs: [“get”, “watch”, “list”]

Apply the Role using:

kubectl apply --f clusterrole.yaml

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 46

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix K: Example RBAC RoleBinding and

ClusterRoleBinding
To create a RoleBinding, create a YAML file with the following contents:

apiVersion: rbac.authorization.k8s.io/v1

This role binding allows “jane” to read Pods in the “your-

namespace-name”

namespace.

You need to already have a Role names “pod-reader” in that

namespace.

kind: RoleBinding

metadata:

 name: read-pods

 namespace: your-namespace-name

subjects:

You can specify more than one “subject”

- kind: User

 name: jane # “name” is case sensitive

 apiGroup: rbac.authorization.k8s.io

roleRef:

 # “roleRef” specifies the binding to a Role/ClusterRole

 # kind: Role # this must be a Role or ClusterRole

 # this must match the name of the Role or ClusterRole you wish to

bind

 # to

 name: pod-reader

 apiGroup: rbac.authorization.k8s.io

Apply the RoleBinding using:

kubectl apply --f rolebinding.yaml

To create a ClusterRoleBinding, create a YAML file with the following contents:

apiVersion: rbac.authorization.k8s.io/v1

This cluster role binging allows anyone in the “manager” group to

read

Pod information in any namespace.

kind: ClusterRoleBinding

metadata:

 name: global-pod-reader

subjects:

You can specify more than one “subject”

- kind: Group

 name: manager # Name is case sensitive

 apiGroup: rbac.authorization.k8s.io

roleRef:

 # “roleRef” specifies the binding to a Role/ClusterRole

 kind: ClusterRole # this must be a Role or ClusterRole

 name: global-pod-reader # this must match the name of the Role or

ClusterRole you wish to bind to

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 47

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 apiGroup: rbac.authorization.k8s.io

Apply the RoleBinding using:

kubectl apply --f clusterrolebinding.yaml

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 48

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix L: Audit Policy
The following is an Audit Policy that logs all audit events at the highest level:

apiVersion: audit.k8s.io/v1

kind: Policy

rules:

 - level: RequestResponse

 # This audit policy logs all audit events at the RequestResponse

level

This audit policy logs all events at the highest level. If an organization has the resources

available to store, parse, and examine a large number of logs, then logging all events at

the highest level is a good way of ensuring that, when an event occurs, all necessary

contextual information is present in the logs. If resource consumption and availability is

a concern, then more logging rules can be established to lower the logging level of non-

critical components and routine non-privileged actions, as long as audit requirements for

the system are being met. An example of how to establish these rules can be found in

the official Kubernetes documentation: https://kubernetes.io/docs/tasks/debug-

application-cluster/audit/.

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 49

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix M: Example flags with which to submit Audit Policy

file to kube-apiserver
In the control plane, open the kube-apiserver.yaml file in a text editor. Editing the

kube-apiserver configuration requires administrator privileges.

sudo vi /etc/kubernetes/manifests/kube-apiserver.yaml

Add the following text to the kube-apiserver.yaml file:

 --audit-policy-file=/etc/kubernetes/policy/audit-policy.yaml

 --audit-log-path=/var/log/audit.log

 --audit-log-maxage=1825

The audit-policy-file flag should be set with the path to the audit policy, and the

audit-log-path flag should be set with the desired secure location for the audit logs

to be written to. Other additional flags exist, such as the audit-log-maxage flag

shown here, which stipulates the maximum number of days the logs should be kept,

and flags for specifying the maximum number of audit log files to retain, max log file size

in megabytes, etc. The only flags necessary to enable logging are the audit-policy-

file and audit-log-path flags. The other flags can be used to configure logging to

match the organization’s policies.

If a user’s kube-apiserver is run as a Pod, then it is necessary to mount the volume

and configure hostPath of the policy and log file locations for audit records to be

retained. This can be done by adding the following sections to the kube-

apiserver.yaml file as noted in the Kubernetes documentation:

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

volumeMounts:

 -mountPath: /etc/kubernetes/audit-policy.yaml

 name: audit

 readOnly: true

 -mountPath: /var/log/audit.log

 name: audit-log

 readOnly: false

volumes:

- hostPath:

 path: /etc/kubernetes/audit-policy.yaml

 type: File

name: audit

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 50

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 - hostPath:

 path: /var/log/audit.log

 type: FileOrCreate

name: audit-log

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 51

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix N: Webhook configuration

YAML file example:

apiVersion: v1

kind: Config

preferences: {}

clusters:

- name: example-cluster

cluster:

 server: http://127.0.0.1:8080

#web endpoint address for the log files to be sent to

 name: audit-webhook-service

 users:

- name: example-users

user:

 username: example-user

 password: example-password

 contexts:

- name: example-context

context:

 cluster: example-cluster

 user: example-user

 current-context: example-context

#source: https://dev.bitolog.com/implement-audits-webhook/

The audit events sent by the webhook are sent as HTTP POST requests with the JSON

audit events in the request body. The address specified should point to an endpoint

capable of accepting and parsing these audit events, whether it is a third-party service

or an in-house configured endpoint.

Example flags that submit webhook configuration file to kube-apiserver:

In the control plane edit the kube-apiserver.yaml file

sudo vi /etc/kubernetes/manifests/kube-apiserver.yaml

add the following text to the kube-apiserver.yaml file

--audit-webhook-config-file=/etc/kubernetes/policies/webhook-

policy.yaml

--audit-webhook-initial-backoff=5

--audit-webhook-mode=batch

--audit-webhook-batch-buffer-size=5

https://dev.bitolog.com/implement-audits-webhook/

U/OO/168286-21 | PP-21-1104 | August 2021 Ver. 1.0 52

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

The audit-webhook-initial-backoff flag determines how long to wait after an

initial failed request before retrying. The available webhook modes are batch,

blocking, and blocking-strict. When using batch mode, it is possible to

configure the maximum wait, buffer size, and more. The official Kubernetes

documentation contains more details on the other configuration options:

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/ and

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/

