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Artificial Intelligence (AI) is the computerized ability to perform tasks commonly associated with human intelligence, including reasoning, discovering patterns and meaning, 
generalizing, applying knowledge across spheres of application, and learning from experience. The growth of AI-based systems in recent years has garnered much attention, particularly 
in the sphere of Machine Learning. A subset of AI, Machine Learning (ML) systems “learn” from the success or accuracy of their outputs, and can change their processing over time, with 
minimal human intervention. But there are non-ML types of AI that, alone or in combination, lie behind the real-world applications in common use. General AI — a human-level 
computational system — does not yet exist. But Narrow AI exists in many fields and applications where computerized systems greatly enhance human output or outperform humans at 
defined tasks. This chart explains the main types of AI, their relationships to each other, and provides specific examples of how they are currently appear in our day-to-day lives. It also 
demonstrates how AI exists within the timeline of human knowledge and development. 
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This paper is a companion piece to the FPF Spectrum 
of Artificial Intelligence (AI) Infographic (fpf.org/blog/
the-spectrum-of-artificial-intelligence-an-infographic-tool/), 
to expand the information included in that educational 
resource, and describe how the graphic can be used 
as an aide in developing legislation or other regulatory 
guidance impacting AI-based systems. We identify spe-
cific use cases for various AI technologies and show how 
the differing algorithmic architecture and data demands 
present varying risks and benefits. We discuss the spec-
trum of algorithmic technology and demonstrate how 
design factors, data use, and model training processes 
should be considered for specific regulatory approaches.

Recent calls for regulation of AI-based systems exist 
within the complex landscape of contemporary AI pro-
grams within a variety of industries and applications from 
agricultural crop growth detectors to automated book 
recommendations.1  Some approaches focus on a need 
to cover “algorithms” generally while other initiatives 
are narrower, suggesting regulation of AI specifically as 
used in automated vehicles2 or medical devices3.  This 
paper aims to assist the development of any of these 
approaches by making clear some of the terms, rela-
tionships, and functions of AI, and how they might be 
impacted by differing restrictions. Any regulatory efforts 
should be made with the best understanding of how 
different systems, use cases, applications, and ultimately 
individuals, will be affected. Despite the media focus on 
Machine Learning (ML), there are many other types of AI 
preceding and operating alongside ML, all of which have 
different attributes and aspects, and which will need 
differently formulated regulatory controls or guidance.

Many forms of artificial intelligence are the clear ana-
logue to human thought processes or human physical 
actions which can be integrated within systems to help 
humans process or move faster, more precisely or 
consistently, and with more information than an individ-
ual could. But, of course, AI systems can also process 
large amounts of data beyond what any human could 
do, to identify patterns, make connections, and predict 
outcomes that are far beyond what conventional data 
science and statistical methods could accomplish. 

A. Symbolic AI

Traditional Rules-Based AI leading to Symbolic AI 
(sometimes used synonymously) is the collection of all 
methods in artificial intelligence research that are based 
on human-readable representations (“symbols”) of 
mathematics, logic, and coded programming. Symbolic 
AI systems represent the first significant steps towards 
designing machines to enable complex decisions or 
reason through complexity and uncertainty. There are 

several algorithmic designs that are generally consid-
ered to be examples of Symbolic AI, including Search, 
Planning and Scheduling, and Expert Systems. 

When computers are programmed to find a specific pat-
tern in a set of symbols and then to perform a designated 
action, we can say that the AI is engaged in a “search.” 
Planning and scheduling AI are what enable a comput-
er to take into account multiple dimensions that require 
adjustments of strategies, such as collecting tokens in 
a video game (e.g. gaining points) while avoiding traps 
(e.g. losing lives). Search AI and planning and sched-
uling AI play important roles in the boring and hidden 
parts of systems that provide many of the conveniences 
in modern life. For example, supply chain management, 
including airline cargo scheduling systems and “just 
in time” restocking models rely on these programs. 
Expert systems identify solutions by combing through 
and combining multiple types and layers of information, 
using the reasoning and logic common to a particular 
profession or specialty, such as medicine or engineer-
ing. An expert system can provide faster, more reliably 
accurate diagnoses based on personal health data, or 
design recommendations for pollution abatement given 
the environmental and industrial factors involved. 

Building computers that can “see,” “listen,” “smell,” or 
“taste” as ways to evaluate their physical environment 
requires new approaches to computer sensing that 
generally rely on a combination including several other 
forms of AI as well. Computer sensing plays an import- 
ant role as a building block for creating augmented 
intelligence used in advanced and assistive robotics. 

Teaching AI to reason using the same cognitive patterns 
as expert professionals involves teaching machines the 
bases of professional common knowledge laid out as a 
set of underlying rules for processing and establishing 
expectations, knitting together the wealth of documents, 
rules, and common knowledge of professions. Known 
as “knowledge engineering” systems, they use rules 
and pattern recognition to sift through data such as tax 
codes, extract relevant patterns, and categories, and 
provide an expert’s guidance. For example, this analysis 
could formulate question and answer sets to guide an 
individual through their tax return preparation, following 
the appropriate steps for that individual’s finances. 

Natural language processing (NLP) systems are some 
of the most common AI systems that people routinely 
encounter. Powering home-based assistants, and various 
devices or appliances; providing language translation 
tools, predictive typing, autocorrect, question and answer 
systems, and robotic speech; summarizing and analyzing 
written texts, and comparing drafts for plagiarism; and 
even writing independent, creative work, NLP combines 
ML with other forms of AI in everyday systems and tools.

I. Executive Summary

image) based upon the initial human programming. The 
other network, the “discriminator,” has been programmed 
to what the correct output should be (e.g., what the image 
should look like). The discriminator evaluates the output, 
and critiques it. Initial outputs are likely to be extremely 
inaccurate. The discriminator’s feedback is then incorpo-
rated, the generator continues to churn out results, and 
the feedback loop continues until the generator produces 
data that the discriminator believes meets the quality 
expectations. This GANs type of learning is what drives 
“deep fakes” and some entertainment uses of AI and will 
likely inform or improve other systems in the future. 

C. Risks and Benefits of AI

The future of AI ultimately lies in the goals and systems 
towards which humans direct it. Responsible uses 
should include two primary foundations for AI: to further 
advance human knowledge and to improve human lives. 
AI is key to the future of knowledge in many scientific 
disciplines and commercial technologies but carries 
accompanying risks that it will be applied unethically, or 
designed unfairly, and that individuals and groups will 
be worse off in specific or personal ways. However, the 
potential benefits are powerfully significant, if sufficient 
effort is applied to ensure fair and beneficial impacts for 
a greater social good. 

AI systems operate across a broad spectrum of scale. 
Processes using these technologies can be designed 
to seek solutions to macro level problems like environ-
mental challenges around undetected earthquakes, 
pollution control, and other natural disaster responses 
while they are also incorporated into personal level 
systems for greater access to educational, economic, 
and professional opportunities. If regulation is to be 
effective, it should focus on both technical details and 
the underlying values and rights that must be protected 
from adverse uses of AI, to ensure that AI is ultimately 
used to promote human dignity and welfare. 

B. Machine Learning

The types of AI described above tell computers how to 
sift through information according to rules and process-
es crafted by humans, such as language or mathematics. 
Machine learning is different. Machine learning works 
because machines use an initial set of rules (program-
ming) to identify connections and patterns which they 
then use to internally edit their instructions or build ad-
ditional rules of their own. Computers using the results 
of prior analyses to improve subsequent calculations or 
minimize loss of performance is what makes machine 
learning so powerful. Machine learning has improved 
traditionally difficult AI tasks, such as image recognition, 
and provides the ability to analyze constantly changing 
information flows for applications like social media con-
tent monitoring. 

Neural networks, the building blocks of some types of 
machine learning, learn by identifying patterns within 
input data to make new, internal, rules about the rela-
tionships between the data and outputs. These systems 
allow computers to process highly complex information 
quickly, sometimes approaching human levels of asso-
ciation and “intuition.” These networks can be layered 
to process data through multiple programs sequentially 
and repeatedly for more sophisticated analysis. When 
they are layered, they may comprise a “deep learning” 
system. These are the systems trained to recognize ob-
jects in photos, evaluating for color values, edges, and 
commonly associated items so that the output value, 
such as probability that a specific image is a canoe and 
not a cat, can be provided to the user. 

Most recently, there are two newer forms of machine 
learning enabling powerful systems to achieve major 
advances: generative adversarial networks (GANs) and 
reinforcement learning (RL). Reinforcement learning is 
a key step in designing AI to independently learn hu-
man-like, goal-oriented, tasks. Reinforcement learning 
is what powered the system that learned to master the 
game “Go.” The first ML system, which defeated the 
human world Go champion 4 games to 1, operated on 
traditional machine learning processes. The next pro-
gram was designed using reinforcement learning and 
beat that original system, 100-0. Reinforcement learning 
systems will likely power the next generation of robot-
ics, for purposes such as search and rescue missions 
in complex environmental situations or high-capability 
home care assistants. 

GANs, the newest variation of machine learning AI 
being developed, are based on creating a pair of neural 
networks that learn by attempting to better each other: 
first, the “generator” of the pair creates an output (e.g., an 
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poorly managed or unforeseen risks caused damage to 
humans, the environment, or social good.  

The second, narrower argument focuses on the un-
known risks that may arise due to the innate design 
aspects of AI that appear to be out of the control of 
the programmer or user of the system. Under this 
argument, because some forms of AI are designed in 
a way that humans cannot fully comprehend, explain, 
or reproduce, we should use AI with regulatory-driven 
caution until we can be more confident of the reliability 
or accuracy of these systems.  Both of these arguments 
assume there are unique aspects to AI-based systems 
that are not, or cannot, be addressed by existing  
legal protections, regulatory schemes, or traditional 
policy approaches.

Our purpose is not to assert if or how AI systems should 
be regulated, but rather to provide a general under-
standing of the variety of AI systems that may be behind 
various applications and industries, and what the im-
pacts might be, and to demonstrate that any regulatory 
action should be taken thoughtfully and in response to 
the particular areas of concern. Blunt approaches that 
seek to include any and all systems using AI-based 
models are considerably more likely to have undesired 
impacts, and/or unforeseen secondary consequences. 

Toward that end, this paper outlines the spectrum of 
AI technology, from rules-based and symbolic AI to 
advanced, developing forms of neural networks, and 
seeks to put them in the context of other sciences and 
disciplines, as well as emphasize the importance of 
security, user interface, and other design factors. Addi-
tionally, we seek to make this understandable through 
providing specific use cases for the various types of AI 
and by showing how the different architecture and data 
demands present specific risks and benefits.

Across the spectrum, AI is a combination of various 
types of reasoning.   Rules-based or Symbolic AI is 
the form of algorithmic design wherein humans draft 
a complete program of logical rules for a computer to 
follow.   Newer AI advances, particularly in machine 
learning systems based on neural networks, are able 
to power computers that carry out the programmer’s 
initial design but then adapt based on what the system 
can glean from patterns in the data. These systems can 
score the accuracy of their results and then connect 
those outcomes back into the code in order to improve 
the success of succeeding iterations of the program. 

A commonly used comparison for an algorithm is that it 
is like a recipe.  This analogy applies well to rules-based 
and symbolic AI.  Like a recipe instructs the cook to com-
bine specific ingredients in a specific order to make a 

This paper is a companion piece to the FPF Spectrum 
of Artificial Intelligence (AI) Infographic, to further 
explain the information included in this educational 
resource, and in particular how it should be used  
as an aide in developing any legislation around AI-
based systems.

If one of the many calls to regulate AI were success-
ful, what exactly would be regulated?   In many ways, 
the answer to this question is “it depends.”   Some 
approaches start from the premise that AI is a discrete 
type of software technology, like an operating system, 
and assume regulations should focus on preventing un-
fair impacts on things like hiring or credit scoring.  Other 
approaches define AI as an entire system of hardware 
plus software, like a robotic arm or a personal home as-
sistant, and should be regulated in ways based on safe-
ty concerns, similar to modern connected automobiles.  
As we will discuss, the contemporary spectrum of AI is 
broad, and any call to regulate AI must align regulatory 
controls that are appropriate to the context, and in light 
of the specific harms of the systems being considered. 

Artificial intelligence is a term with a long history. 
Meant to denote those systems which accomplish tasks 
otherwise understood to require human intelligence, AI 
is directly connected to the development of computer 
science but is based on a myriad of academic fields and 
disciplines, including philosophy, social science, physics, 
mathematics, logic, statistics, and ethics. AI as it is de-
signed and used today is made possible by the recent 
advent of unprecedentedly large datasets, increased 
computational power, advances in data science, machine 
learning, and statistical modeling. AI models include 
programming and system design based on a number of 
sub-categories, such as robotics, expert systems, sched-
uling and planning systems, natural language process-
ing, neural networks, computer sensing, and machine 
learning. In many cases of consumer facing AI, multiple 
forms of AI are used together to accomplish the overall 
performance goal specified for the system. In addition 
to considerations of algorithmic design, data flows, and 
programming languages, AI systems are most robust for 
use in equitable and stable consumer uses when human 
designers also consider limitations of machine hardware, 
cybersecurity, and user-interface design.

Two arguments are most commonly behind calls for 
regulation.   The first is that AI presents unique risks 
to humans, the environment, or social and cultural 
values at a scale and scope beyond prior technological 
advancements.   Under this argument, AI regulations 
should introduce mechanisms to identify and mitigate 
potentially harmful outcomes, both tangible and intangi-
ble, as well as offer solutions to rectify situations where 

II. Introduction

particular dish, a rules-based AI system is a set of 
commands such as if-then logic statements that 
tell a computer how to combine precise forms 
of information to achieve a particular task or 
outcome.  Algorithms can be more or less exact 
in their outputs based upon the clarity of the 
instructions we give.  Just as a recipe written by 
a chef may call for a “pinch of salt” because most 
chefs have a common understanding of what a 
“pinch” is, an AI system that instructs a computer 
to reason probabilistically or approximately may 
be used in cases where a “good enough” answer 
helps augment human decision-making.   Also 
like recipes, AI systems can range from simple 
to extremely complex, with some of the most ad-
vanced systems being combinations of multiple 
algorithms creatively combined. 

Ethics is a potentially controversial term with both 
positive and negative connotations. Historically, 
ethics is a discipline that trains minds to consider 
universal ideas about what it means to be human, 

and addressing questions such as “what is good, how might 
I be good, or how might I do good?” But ethics can also 
generate concerns about people shifting boundaries around 
good and evil, or subjectively defining right or wrong toward a 
particular agenda or outcome.6 The vagueness about what is 
or isn’t included in ethics has also given rise to the use of syn-
onyms and associated concepts for this area, such as “social 
responsibility,” “morals,” “values,” or “human rights” without 
always being clear or consistent as to what each of these 
means.  These various perspectives on ethical considerations 
have flowed over into twenty-first century discussions around 
the appropriate roles of industry, technology, and automation, 
all of which continue to influence contemporary debates 
about ethics in AI. These now include robust arguments of 
ideas such as whether an AI system can “be” ethical (or uneth-
ical), whether it’s dependent on the applications and context, 
whether human labor and safety priorities should pre-empt 
technological efficiencies, and even ideas like whether robots 
are independent entities with agency or rights.7

Ethics

Each of the foundational disciplines of artificial 
intelligence discussed on the following page — 
logic, mathematics, physics — were once part 
of what we now call philosophy.  In Western tra-
dition, philosophy is the love of wisdom; per the 

Greeks, to love wisdom is to seek the pursuit of knowledge. 
While knowledge can be both theoretical or practical, within 
the context of modern AI, the impulse to gain practical knowl-
edge to deploy to a particular goal generally dominates.   

Western philosophy is only one of the views that informs think-
ing about “intelligence” in computer systems.  The Indian sub-
continent describes philosophy as a debate between humans, 
nature, and the gods. Wisdom through their texts is the ability to 
deploy wit alongside theoretical or eternal truths on the way to 
gaining a full grasp of being, knowledge, and even nothingness.  
The competing traditions of Chinese philosophies reflect the 
salience of learning, character development, an appreciation of 
uncertainty, and the importance of meaning as the product of 
a lifetime of seeking. Other philosophical traditions also bear 
upon how we measure the intelligence of AI systems today.5

Philosophy

III. Foundation 		
     Disciplines4 

AI and Machine Learning (ML) are relatively new 
features of the scientific landscape, but they are 
built upon a long history of philosophical and 
scientific developments, including areas such as 
philosophy, ethics, logic, mathematics, and phys-
ics. In more recent decades, scientific disciplines 
that inform AI include data analytics, statistical 
modeling, and cybersecurity and encryption. 
Furthermore, these systems cannot be evaluated 
without also including considerations about the 
hardware devices and networks, the underlying 
logics and principles, and user interface and user 
experience designs.  All of these areas contribute 
to the questions, answers, and analysis needed 
to fully review present day AI. While some might 
seem remote, or tangential, in fact the underlying 
values and assumptions of the designers and 
users are key to understanding the contextual 
implications of any particular AI system.
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Mathematics

Logic

Even without consideration of the emerg-
ing, transformational impact on AI that may 
arise when quantum computing becomes 
more widely understood and available, the 

role of physics in artificial intelligence cannot be un-
derstated.11 Problems associated with mining the data 
from massive physics research projects (e.g., CERN, 
astronomy) have pressed machine learning experts to 
identify new methods for managing data at the scale 
of the universe, as well as that of the quant. At the end 
of the day, AI systems operate in the physical world 
and are bound and scoped by the physical restraints 
of human-scaled applications.

Physics

Logic is a branch of mathematics based on 
established rules and proofs. It is concerned 
with evaluating conditions and relationships 
with statements such as “if, then.” Symbolic 

logic, modal logic, predicate logic, syllogistic logic, and 
computational logic are all part of the study of how 
humans record their ideas, reason about their innate 
connections, and reach conclusions that can be rep-
licated.8 In the areas of AI and machine learning, logic 
plays an intrinsic role in the translation of human rules, 
conclusions, or understanding into machine parameters 
and actions. Indeed, symbolic and rules-based AI could 
not exist in their known forms without logic.9

Outside of computer programming, AI and 
machine learning can almost easily be 
defined as areas of applied mathematics.10   
Weaving together linear algebra, calculus, 

combinatorics, graph theory, information theory, 
probability, and vector analysis, machine learning in par-
ticular depends on the mathematical manipulation and 
analysis of data.  Mathematical thinking and the repre-
sentation of the world in equations and numerical terms 
are critical to explanations of AI and machine learning. 

A. Data

“Data” is the organized record and presentation of 
information. Modern “big data”12 in the digital world is 
part of the trail created by people, businesses or other 
organizational entities as they interact with sensors, 
surveys, sites, and applications embedded in the array 
of internet or computer-based, or computer-connected, 
products, services, and features.13 Data in this context 
has measurable characteristics like volume, variability, 
accuracy, and value, and also can have organizing prin-
ciples around protection, privacy, provenance, and pro-
portionality.14  In discussions about AI and ML, personal 
data is often categorized according to the sector from 
which it is gathered, such as healthcare, financial, edu-
cational, or consumer data. Data is also described based 
on the technological associations, including sensor data, 
location data, or visualized data.15  Data can also be syn-
thetic, imputed, or meta (data about data). Data is not just 
the invaluable input into many AI and ML systems, but 
also includes the information created by or describing 
the analysis inherent in those systems, and the outputs 
and recommendations the systems produce. 

The techniques necessary for processing data for uses 
in AI and ML have spurred both theoretical and applied 
research in areas of data management, including the 
ethical processing of data (e.g., differential privacy) and 
the technical processing techniques like dimensionality 
reduction (e.g., principal component analysis).16  The 
demand for AI-ready data has also spawned an industry 
for data engineering, a new form of AI-adjacent special-
ization that serves to expedite, but potentially compli-
cate, explainability and transparency for new machine 
learning applications. 

Cleaning data, identifying bias in data, adding noise to 
data, deidentifying data, standardizing machine-readable 
data, analyzing data, and “owning” data are just a few of 
the many issues surrounding the collection, flow, and use 
of all of this information in modern digital systems.

B. Statistics

A branch of applied mathematics often tailored into 
specific fields (e.g., statistical mechanics, biostatistics), 
statistics inform the way in which the inputs for AI sys-
tems are evaluated and how the outputs are interpret-
ed.17 Statistical modeling is the design of a way to make 
sense of data through analysis. Without established 
statistical theory, we would lack many of the essential 
concepts to explain how AI works or to evaluate how ac-
curately machines have identified patterns. Established 
tools and measures such as variance, correlation, con-
fidence, probability, and hypothesis testing inform the 
algorithmic models in order to glean insights and inform 
evidence-based reasoning.18  This reasoning drives how 
systems combine data to test representations of reality 
against one another, and provides the tools necessary 
to evaluate the results.

IV. Modern Components

C. Design

While not always the first area of consideration for AI 
systems, the physical design of AI systems includes 
considerations of aesthetic value, creativity in physical 
presentation, and the efficiency of human interface. 
Apple, for example, is particularly known for its focus 
on beauty and intuitive function as part of its innate 
design structure.20 “Design thinking” —  a process for 
brainstorming collaboratively — includes 5 stages: 
Empathize, Define, Ideate, Prototype and Test and 
is deployed widely in the software and applications 
development landscape in user interface design and 
user experience design.   More than simple efficiency 
or functionality, however, design considerations for AI 
systems must also include the understanding that they 
are integral components of applications that affect 
the lives of individual people, communities, cultures, 
and the environment. Whether focusing on personal 
privacy, bias and fairness, civil rights impacts, or other 
social impacts, design choices are a fundamental con-
sideration in any AI system.

Security is an intrinsic element in the 
trustworthiness and reliability around AI 
systems, including hardware, software, and 
network components.  AI can be both a vul-

nerability, and a part of the defense of computers sys-
tems against cyber intrusion. Data can be “poisoned” 
at multiple stages in the life of a model, and models 
themselves can be subverted. But AI-based systems 
are also being integrated as powerful tools for defend-
ing against cyber attacks targeting datasets as well 
as existing systems, such as energy grids, or defense 
networks. Security concerns are a critical component 
of all stages of system design and implementation.  In 
addition to the traditional threats to data, networks, 
and storage, AI models in particular are at risk from 
inference, inversion, and extraction attacks — all of 
which potentially compromise the system, whether by 
revealing the data, or inappropriately influencing the 
outcomes or future processing.  

Security

Hardware

From the physical building of “server 
farms,” to considerations of the environ-
mental impact of the their huge power 
requirements, AI systems occupy a 
substantial place in the physical world, 

integral to providing the digital and virtual platforms we 
have all come to take for granted.

Modern AI, and in particular ML, are possible only 
because of advances in computer processing speeds 
and associated hardware infrastructure, such as 
high-density, environmentally controlled servers, 
high-resolution monitors, and even peripherals like 
HDMI cables. Progress in AI depends on continuous, 
reliable access to high performance computing hard-
ware and transmission channels. Even for cloud appli-
cations or virtual environments, there is a hardware in-
frastructure where applications reside, computations 
are performed, and system management carries out 
the necessary planning in support of efficient distribu-
tion of AI processing.19  
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A. Rules-Based AI

Artificial intelligence has been part of the programming 
landscape, built on the academic foundational disciplines 
described above, since at least the 1940s.  The earliest 
forms of AI are still in use today, including within some of 
our most widely used systems.  In fact, examples of rule-
based AI, such as those which make up the backbone 
of navigation systems, are so commonplace we often do 
not think of them as artificial intelligence any longer.

The initial drive to build artificial intelligence grew from 
the human desire to automate work that is repetitive, 
tedious, dangerous, requires high levels of precision, 
or is simply impossible for an individual or group of hu-
mans given some combination of factors.  Many of these 
tasks are dependent on heuristics — formal and informal 
rules — that “everyone” within that field or domain just 
“knows.” Some of the first examples of rules-based or 
heuristic AI emerged in fields like chemical analysis, 
infectious disease diagnostics, or oncology diagnostics.  
What was relevant about these domains was the belief 
that the logical structure of the questions to be asked 
and the specific types of information necessary to an-
swer those questions was both available and could be 
symbolically represented to a computer. The rules for 
reaching “good” decisions, and the expert knowledge 
of uncertainty or confidence in the utility of a specific 
piece of information, could be systematically organized 
and ranked to produce a reliable, consistent answer by a 
non-human program that was on par with, or superior to, 
that deduced or provided by the human expert.  

Rules-based systems maneuver through data using 
an “inference engine”;23 a set of logical commands 
according to which a computer interprets information 
and relates that information to the set of possible out-
puts (e.g., a probability score) in order to answer the 
questions asked of it. Because of the logic and sym-
bolic structure of inference engines driving rule-based 
systems, they can work both backwards and forwards. 

Inference engines work by either “forward chaining” 
or “backward chaining” through the rules. In a forward 
chaining strategy, an inductive approach (moving from 
individual facts to general theory) moves forward from 
data inputs to conclusory outputs by matching the data 
to the best rule to identify a match. In a backward chain-
ing strategy, a deductive logical approach (from general 
theory to individual facts) moves backward from the 
provided set of possible outputs, through the rules and 
data, to identify if a particular output can be supported 
as legitimate.  Where a known set of possible outputs 
or decisions is generally well characterized, such as in 
healthcare diagnostic systems, a backward chaining 
strategy is useful.  Where there is a wider or uncertain 
range of possible outputs from a system such as select-
ing, combining, and providing the appropriate mix of 
medications, a forward chaining strategy is useful.
 

a.	
B. Symbolic AI

The terms Symbolic AI and Rules-based AI are many 
times used interchangeably. Systems that automate 
processes in an imitation of human reasoning, such as 
through the use of logical statements or identification of 
patterns, are a type of symbolic AI. Computers can be 
designed to detect patterns such as sequences of let-
ters, numbers or other symbols, and then to reproduce 
an arrangement of those symbols so that humans can 
evaluate them.  There are various versions of this type of 
system, which we are using as the umbrella term for the 
following three sub-categories:

i.  Search
Search algorithms are used by many people 
in contemporary life. Since the beginning of 
the age of internet search engines, “search” 

has come to be synonymous with online browser search 
capabilities, but that is not the entirety of what this 

V. Artificial Intelligence – Overview

category includes. Search algorithms are used in many 
systems that are designed to find the best path to a 
goal within a specific set of possible solutions.  Search 
algorithms help us to achieve goals such as reaching the 
highest score on a game, finding the shortest or fastest 
route to a destination, or finding a recipe for vegan choc-
olate chip cookies. At scale, and for industrial purposes, 
Search is one of the tools to help optimize supply chains. 
Search algorithms are a useful category of AI, but they 
treat problem-solving holistically and without account-
ing for constraints.

A search algorithm can be best pictured by thinking 
through a grid environment.  In a grid, a search algorithm 
takes your initial position (such as 0,0 or the origin on a 
coordinate grid), applies the possible set of actions you 
can take, such as rules for chess piece maneuvers, cal-
culates what will happen after each action, weighs them 
as possible solutions to achieving a goal state (such as 
arriving at 10,0), and weighs the actions across the spec-
ified action cost function, such as each move costing 1 
point.   Good search algorithms help an actor to find a 
low-cost solution using the least amount of resources, 
including the cost of calculating complex solutions.24  

For example, when a computer is taught to attempt early 
computer games, such as Pac-Man, it can be taught to 
achieve a high score by finding each dot on the way to 
the piece of fruit. But, searching to achieve a relatively 
simple goal like “collect cherries in Pac-Man” can be 
made more difficult by increasing the complexity of the 
rules of the game, such as the need to avoid dead-ends 
and ghosts in the mazes. To teach a computer to fully 
play Pac-Man — where it not only collects fruits but also 
avoids dead-ends and ghosts — requires an additional 
form of symbolic AI, Planning and Scheduling.

ii.	 Planning and Scheduling
For more complex sets of variables that 
include constraints, such as finding a route 
to a city airport without using highway, or 

by a particular method such as train, an AI will normally 
be programmed by combining Search algorithms with 
Planning and Scheduling programming.   

Planning algorithms are advanced Search algorithms that 
treat problem solving more like the way a human would.  
These planning algorithms can account for a variety of 
situational constraints, such as incomplete information, 
time constraints, and non-redundancy of resources.   
These types of models are used  to design work plans, 
strategic design, and logistics planning for tasks like 
helping the Hubble Space Telescope arrange its scans of 

Artificial intelligence covers many combinations of hard-
ware and software components, but at its core, means 
the set of actions that would normally be understood to 
require human intelligence. The most dazzling examples 
of AI that appear in science fiction are identical or superi-
or to generalized human cognitive and intuitive powers. 
Whether this type of AI, known as General (or Strong) 
AI is even possible remains speculative, with no clear 
idea of when such capability might develop. However, 
Narrow (or Weak) AI is defined as the operation by sys-
tems performing particular functions in a specific con-
text, application, use case, or circumstance. Thus, the 
greatest chess player, and the world Go champion, are 
now AI systems. These systems, while far outstripping 
human capabilities in one specific area, are fairly use-
less for almost any other purpose. While some aspects 
of their programming and sub-routines might be reused 
to jump start other projects, it is not a system that can 
intrinsically “learn” a new skill (function or application) 
without human involvement to edit and reapply that 
code, provide new data and training, and so on.

Across the spectrum, AI is a combination of various types 
of reasoning. Rules-based or Symbolic AI is that form of 
algorithmic design wherein humans draft a complete 
program of logical, connected commands for a computer 
to follow.21  Newer AI advances, particularly in machine 
learning systems based on neural networks, are able 
to power computers that carry out the programmer’s 
initial commands but then adapt their operations based 
on what the system can glean from patterns in the data. 
These systems evaluate their results and then connect 
those outcomes back into the code in order to improve 
the success of succeeding iterations of the program.22

Recently, what the media and many discussions around 
AI are most commonly referring to is actually machine 
learning, as if those two terms were exactly interchange-
able. In fact, however machine learning as a specific 
subset of AI. Explaining the specifics of machine learn-
ing and the distinction between it and other types of AI 
is one of the primary goals of this paper and infographic. 
All ML is a form of AI, but not all AI is ML. This is one of 
the key takeaways to inform potential policymakers in 
their consideration of regulating AI systems — that they 
should correctly identify what type of systems are be-
hind the functions and applications they are concerned 
with, and how those operate, so that standards, guid-
ance, and restrictions can be targeted appropriately.
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the universe.25 When this sort of program includes time 
components, they also include Scheduling algorithms to 
show which steps are dependent on other factors, and 
which may take place simultaneously versus those that 
must occur sequentially. Global supply chain manage-
ment, metropolitan transportation planning, and energy 
distribution grids all use these forms of Symbolic AI.

iii.  Expert Systems
Some of the first Symbolic AI systems 
helped experienced practitioners in 
various professional domains to make, or 

teach others to make, complicated decisions, thus giving 
them the name “expert systems.” Expert systems identi-
fy possible solutions by combing through and combining 
multiple types and layers of information.  Expert systems 
sift through information using the reasoning and logic 
common to a particular profession or specialty, such as 
medicine or engineering.  

The key components of expert systems are an exten-
sive, detailed “knowledge base,” the “inference engine,” 
and the available working memory.   The knowledge 
base is the network of rules, logical statements, and 
domain specific knowledge and reasoning that defines 
the expertise of humans.   The knowledge base is an 
engineered product constructed to organize the rules, 
norms, protocols, and standards of the specialty, in-
cluding ranking and ordering them in sequence of the 
information needed.  This organization is done using a 
system of symbols comprehensible to both humans and 
computers such as programming languages, dictionar-
ies for natural language processing, or established rules 
for maneuvering around a defined environment, such as 
a chess board.

Thus, expert Systems augment the decision-making 
capacity of professionals in a specific topical domain by 
systematizing their most expert levels of knowledge into 
heuristics (rules) and designing systems that can apply 
them to new situations or large sets of data inputs. These 
systems are also the basis for other forms of algorithmic 
reasoning, such as some forms of natural language 
processing, and can be combined with scheduling and 
planning systems, for use cases like robotics, and even 
in newly conceived situations where the solution to a 
problem or the best action to take is not immediately 
obvious even to the human observer. 

C. Computer Sensing

Perhaps the most intriguing use of AI and machine learn-
ing today is the ability to design and train computers 
to “sense” and then evaluate the physical environment 
around them.  Computers can be designed with a range 
of sensors that simulate seeing, hearing, smelling, even 
tasting, and thus can be trained to collect, process, and 
respond to active or passive stimuli extending well be-
yond that of human sensory perception in both scope 
and accuracy. These sensors might perceive and mea-
sure light (including infrared spectrums), touch, distance 
(range), temperature, acceleration, and speed.  Although 
early programmers assumed that having computers in-
terpret their environments visually would be one of the 
easiest tasks, creating the algorithms essential for com-
puter vision has proven to be an extraordinarily difficult 
challenge that now routinely combines aspects of rules-
based and symbolic AI together with machine learning.  

Furthermore, computers are being trained to “hear,” 
“smell,” or even “feel.”   Differentiating and classifying 
sounds is taught to computers in much the same way 
that “seeing” is. A similar set of algorithms, combined 
with neural networks (discussed under Machine Learn-
ing, below) are designed to analyze and classify sounds.  
Teaching computers to “smell” means to classify the 
molecules detected, and makes use of older forms of AI, 
combinations of AI and machine learning, and more re-
cently, a newly designed form of neural networks called 
“graph neural networks.” 

Beyond the physical senses, there is research designed 
to train computers to both perceive and demonstrate 
emotive behavior from or on par with humans. However, 
attempting to design models which can reliably identify, 
mimic, or initiate emotive behavior remains in the early 
stages, is currently imprecise and inconsistent, and even 
where accurate, triggers some of the most challenging 
ethical and social questions.

V. Artificial Intelligence – Overview (continued)

D. Robotics

Robotics is a field at the intersection of physics, engineer-
ing and computer technology that produces machines 
that substitute for, augment, or replicate physical human 
actions. They do not all, or even most, look humanoid. 
But in all their varied forms robots are gaining intellec-
tual and mechanical capabilities that are largely due to 
the continued expansion of the AI systems powering 
them. They are built on Rules-based programming, and 
likely incorporate Sensing in many variations, and in the 
more complex systems, incorporate multiple Machine 
Learning algorithms.

Like General AI, many of our ideas about robots come 
from science fiction, and may mean different things to 
different people. However, robotics in an AI context is 
likely to be a much less comprehensive machine. The 
working definition usually includes some sort of me-
chanical device, with the specific abilities necessary to 
complete a physical task, in a particular environment, 
with specified parameters. Robots require a power 
source of some kind and contain varying amounts of 
programming — there are plenty of robots with no AI 
involved, but more and more are incorporating at least 
some level of advanced model or system. Some are 
designed to operate independently, or in many cases, to 
carry out tasks while in contact with cloud-based com-
putational resources, or carry out specialty operations 
under a human’s direct control.

The scope of robotics applications is expanding quickly. 
Twenty years ago, most robots were doing things like 
assembling cars in factories. These consisted mainly of 
mechanical arms tasked with routine, repeatable tasks 
for attaching or manipulating car parts. But by today, 
self-operating machines and self-propelled units explore 
extreme climates on Earth and other planets, assist war-
fighters and law enforcement, and are increasingly used 
in many aspects of healthcare and hospitality services. 

E. Knowledge Engineering

Knowledge Engineering is a field of AI oriented to build 
systems that emulate the judgment and behavior of 
a human expert by codifying knowledge as rules and 
relationships between data. These systems represent 
knowledge as directed acyclic graphs which are able 
to express complex calculations and logical eligibility 
rules. The graphs can be easily queried and and the 
results reasoned to automatically produce a calculation 
or decision result. When reasoning using a Knowledge 
Engineering system, a backward chaining algorithm is 
typically used. Backward chaining starts from the goal 
and works backward to determine what facts must be 
asserted so that the goal can be achieved.

As an example, Knowledge Engineering powers the 
programs designed to provide individual and business 
users with the ability to comply with the ever-changing 
taxation rules and regulations. Because there are so 
many and they change so frequently to greater and 
lesser degrees, it would be nearly impossible for an in-
dividual to effectively identify, extract, and reconcile the 
new rules against the old ones.  To manage this at scale 
for people and businesses generally, an ensemble of 
rule-based algorithmic approaches are adopted: Natural 
Language Processing is used to review current laws and 
extract pertinent information; graph algorithms, such as 
networked analysis, can show the relationship of new 
rules to previous instances of the rule and also reflect 
the impact of other applicable rules.  The information ex-
tracted can be further processed into ontologies (repre-
sentations of abstract concepts) that establish the terms 
to encode for use in subsequent applications, such as 
those which forecast taxable income streams and asso-
ciated revenue for states and the federal government. 
And thus the whole is created to guide a user through a 
detailed but highly individualized process based on their 
own information, against the background of the most 
current rules.
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V. Artificial Intelligence – Overview (continued)

navigation systems may be unable to optimize for the fastest 
route in a way that accounts for all user preferences, such 
as external safety considerations or for roads with a history 
of flooding. And like any AI system, adverse consequences 
may arise from flaws in the model components or the data, 
whether from errors in the knowledge base or inaccuracies 
within the inference engine for knowledge engineering.  

These systems’ highest value is most often as they 
augment humans already carrying out these process-
es. Expert systems facilitate more accurate and faster 
diagnoses and some treatment processes but have not 
replaced the need for human doctors.   While domain 
knowledge can be carefully engineered, the process of 
maintaining and expanding a knowledge base to account 
for new information introduces complexity, overlap, and 
the potential for errors within computerized expert sys-
tems.  In the complex arena of medicine and diagnostics, 
keeping a knowledge base current presents an ongoing 
challenge, with the potential risk that patients will not 
receive the latest, best, or most effective treatments.  

There are also considerations like risks to physical safety 
when general planning algorithms are not appropriately 
tooled by human designers, such as those used to direct 
industrial robots or other automated industrial processes.  
Likewise, planning algorithms such as those which might 
make up the logistics strategy for delivering pandemic 
vaccines or other crisis response materials, may not pro-
vide optimized plans if they are not written to sufficiently 
account for all the challenges involved, such as reaching 
remote areas, prioritizing population cohorts for tiered 
receipt, and storage and expiration — some of which may 
be difficult to define in new contexts, or generate require-
ments for which information is not available. As with all au-
tomated processing, the quality of the outputs will always 
be driven by the quality of the design and the availability 
and accuracy of data inputs behind the model or system.

The newest designs of algorithmic systems are the 
various forms of Machine Learning (ML). As mentioned, 
the attention and public focus on these systems as they 
have begun to pervade everyday devices and systems 
has been so prevalent in recent years, that for many 
people, ML and AI are treated as one and the same.   
With the advent of mobile devices such as smart phones 
and tablets, machine learning has been implemented 
to provide everything from weather apps to video and 
book recommendations, personalized healthcare and 
fitness platforms, and programs to accelerate and sup-
port employment and educational needs.  The average 
consumer may enjoy using these applications but will 
likely struggle to describe what machine learning is, 
how it works, or where it contributes to the applications 
found in their phones, televisions, or even appliances. 

F. Natural Language Processing

Designing computers to speak, as well as to understand 
speech and text, is one of the most fundamental functions 
necessary for the general progression of AI systems, 
and research on these various capabilities all involves 
some forms of natural language processing (NLP) — a 
combination of Symbolic AI and Machine Learning. Be-
cause language is itself a set of rules (grammar, syntax, 
verb forms, etc.), individualized language programs can 
be organized to process data according to those spe-
cific rules to classify or predict language.  For example, 
when a large body of text (corpus) is examined using a 
dictionary (a set of search terms of interest) or parts of 
speech are tagged, the rules are used to construct the 
outputs, whether that be restatements, translations, or a 
sentiment analysis score.  NLP covers the full scope of 
systems designed to understand text, perform analysis 
or translation, and interpret and create text, as well as 
understanding spoken inputs, and speaking in return.

G. Risks and Benefits – Rules-based AI

Rules-based or Symbolic AI may seem simple or even 
old-fashioned compared to its “smart,” machine learning 
counterparts. However, many apps commonly used to-
day, as well as much of the AI used to power the contem-
porary economy, make use of these variations of AI.  The 
power of these systems is in solving design challenges 
for integrated circuits such as on computer chips, creating 
spam filters for emails, and crafting workday schedules. 
They can be applied to exceedingly complex problems.  
Most recently, for example, research into protein-folding 
structures, such as AlphaFold, build on the earlier work 
of assembly-line designs similar to the robotic assembly 
of machine parts, are based on rules-based AI.26

However, as useful as symbolic systems are, they do have 
some limitations.  For example, search and planning-driven 

Machine learning is distinguished from Rules-based AI in 
that it is coded so that the machine learning system can 
adjust its manipulation of the data to improve on human 
designated metrics for accuracy and fit, as in the case of 
making better recommendations. The systems identify 
patterns in a dataset, edit inferential rules based on those 
patterns and connections, and then judge the fitness of 
that model’s outputs against the requirements set by the 
human programmers. When we say that a machine “learns,” 
it means the program iterates the process enough times to 
perform better and better, to make the model outputs more 
accurate against a previously set standard for success.

Machine learning has a number of sub-categories as well. 
ML systems can identify patterns in data we already know 
something about, such as when it classifies or predicts 
based on similarities of existing preferences, and can also 
derive conclusions from data we know nothing about yet, 
such as when it clusters items based on unseen connec-
tions or even generates new data.  While there are general 
methods for training machines and designing machine 
learning systems, many programs are ultimately unique to 
context, designed for a specific problem. These programs 
predict, classify, categorize, mine, and learn from the data.  
Even machine learning program that start out identically 
become unique because each has “learned” through its 
own data-driven experiences, influenced by the initial 
weight and importance values assigned by the program-
mers, and then modified over time with real data. 

The primary types of machine learning training are super-
vised and unsupervised learning, along with variations like 
semi-supervised, self-supervised, multi-task, and transfer 
learning.   Without delving into detail on each, the types 
are essentially defined by what type(s) of data are used 
to develop, train, or test the system. Supervised learning 
is a system using data that has been labeled by humans 
(a process that can raise ethical issues all on its own).27   
Unsupervised learning uses unlabeled data and exploits 
the connections that the computer identifies, largely 
independently.28  Semi-supervised learning is in between 
these, when the system uses a small set of labeled ex-
amples and learns from those while also evaluating and 
analyzing the unlabeled parts of the same dataset. 

Just as humans can learn to perform new tasks simulta-
neously, machines can be taught how to “multi-task” or 
to perform related tasks simultaneously.29 And transfer 
learning is when the functional skills of a machine learning 
model are transferred from one domain, or use case/appli-
cation, to another, with appropriate adjustments tailored 
to the new topic and problem. This may be done for cost 
savings or other efficiencies, but can result in inaccurate or 
even ethically problematic outcomes if the updates made 
for the new use were not sufficient to account for different 

applications, and any associated risks.30   Nevertheless, 
transfer learning is increasingly common as companies 
seek to maximize their return on investment. Particularly 
given the environmental costs associated with developing 
new or state of the art machine learning algorithms, trans-
fer learning is increasingly being explored.31

Machine Learning is applied in areas like healthcare, re-
tail, e-commerce, recommendation engines, self-driving 
cars, online video streaming, IoT (connected devices, 
voice assistants, connected home appliances), and trans-
portation and logistics, as well as many, many others.

A. Reinforcement Learning

Some machine learning algorithms are designed with 
a model of learning that is based on exploration and 
trial-and-error without explicitly relying on existing data 
inputs. These systems seek to reach a particular level of 
accuracy by generating various outputs, checking them 
against expectations, and then continuously editing their 
process to get closer and closer to a match between 
solutions discovered and goals. Various factors of the 
outputs — such as money, time, or other resources — are 
given weighted values, and the algorithm is then tuned 
to explore in such a way that gains it the maximum re-
ward by performing those actions that bring the highest 
reward values with the least errors.   In other forms of 
reinforcement learning, the computer proceeds without 
any prior knowledge of the environment, adding each 
new learned fact after each action and thus building its 
own model of choices that lead to rewards.32

For example, a program designed to play a video game 
may be designed where the reward is gold coins and the 
errors are the loss of game lives. A reinforcement learn-
ing system will figure out how to maximize the number of 
coins gathered while also reducing the number of lives 
lost in a video game by repetitively exploring through 
every possible set of choices, even without preset 
guidance as to what its game behavior should include.  

VI. AI – Machine Learning
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systems can address business challenges such as sales 
forecasting, consumer research, risk management pre-
dictions, and character recognition, among other things.

Neural Networks have multiple variations, including Con-
volutional Neural Networks (CNN) and Recurrent Neural 
Networks (RNN). Another form, Generative Adversarial 
Networks (GANs) is discussed separately, below.

Convolutional Neural Networks (CNNs) are uniquely 
suited to operate on image data and are the algorithmic 
forms behind many facial recognition systems.   CNNs 
use “kernel” filters in the input layer, meaning the image 
data is filtered in repeated and overlapping sections and 
then fed forward through the remainder of the system 
as a highly refined “feature map” of the image. Most 
CNNs are feed-forward systems which learn to see the 
features of an image by applying multiple filters in paral-
lel, something like viewing the same image in up to 512 
ways for a complete mental model of the image. CNNs 
“see” images somewhat like human artists see an object 
or a body — in ways that consider perspective, depth, 
and lighting, and how these affect the representation. 

For this reason, CNNs are used in objects detection and 
classification systems.  CNNS can detect and differenti-
ate discrete objects within an image, such as road signs, 
or cats. They commonly operate by finding the “edges” 
of different objects, and then comparing the arrange-
ment of edges, with other images they’ve previously 
identified.37 (When this doesn’t work as accurately as 
desired, undulating sand dunes may be mistaken for a 
reclining human body, for example.)  CNNs can compare 
objects or faces in a 1:1 or 1:many fashion, depending on 
the design of the system. In other words, if the system 
is trying to find all the traffic lights in the image, then 
every item is simply “yes, traffic light,” or “no, not traffic 
light.” Other systems may want to identify as many items 
in the image as possible, without knowing in advance 
what they might be.

In contrast, Recurrent Neural Networks (RNNs) learn 
from data where timing and sequencing are important 
features, to answer questions around forecasting — 
predicting changes in air quality, the next word in a 
sentence, or stock market risk management estimates 
based on numerous highly variable factors.  RNNs begin 
with data from the input layer passed through the hidden 
layers to the output layers, however, they include loops 
within the hidden layers that mimic a type of short-term 
memory of what has already been processed. RNNs can 
also map a single input to multiple forms of output.  This 
means that RNNs are well suited for problems such as 
translation and voice classification where one input — a 
letter or a phoneme (smallest piece that distinguishes a 
word) — can lead to different outputs.38    

Reinforcement learning algorithms are what drive some 
of the notable forms of machine learning, such as when 
machines learn to play games, operate a flight simulator, 
or power a robot vacuum through a new environment.33 
And because reinforcement learning does not require 
an existing large set of data on which to train or operate, 
it can avoid some of the technical and ethical challenges 
involved with creating and maintaining such datasets.

B. Neural Networks

Neural Networks (NN) are a type of machine learning 
inspired by the human brain. They differ from other 
forms of machine learning in that they are non-linear 
by design.34 A NN consists of a web of interconnect-
ed entities known as nodes; each node carries out a 
simple computation, similarly to the neurons in the 
human brain.   Neural Networks are a collection of the 
algorithms used in Machine Learning for data model-
ling operating within this graph of nodes. Data passes 
through several layers of interconnected nodes, as 
each node classifies the characteristics and information 
of the previous layer before passing the results on to 
other nodes in subsequent layer. The layers of networks 
pass the data through hierarchies of various concepts, 
which, like other machine learning models, allows them 
to learn through evaluating their own errors. 

The first, or input layer, is where data is received, such as 
data uploaded to a cloud service or live sensor data, and 
is then subject to a mathematical function that manip-
ulates the data for further use over multiple iterations.   
The input layer to a learning system is not simply data 
ingestion but is an active path of calculation. The input 
layer leads to (at least one) hidden layer, and finally to an 
output layer. Each layer contains one or more nodes. By 
increasing the number or complexity of the hidden lay-
ers, you increase the computational and problem-solving 
abilities (as well as the computational costs required).35 
Deep Learning (discussed below) is defined as NNs 
with more than three layers.36 Neural Network-based 

D. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are the newest 
variation of ML being developed, and are based on a pair 
of neural networks that learn by attempting to get the bet-
ter of each other. First, the “generator” of the pair creates 
an output (e.g., an image) based upon the initial human 
programming. The other network, the “discriminator,” has 
been programmed with criteria to evaluate the output 
(e.g., what the image should look like). The discriminator 
considers the output, and critiques it — essentially de-
termining whether it is real, or correct. Early in the cycle, 
the initial outputs are likely to be far off from what is de-
sired. The discriminator’s feedback is then incorporated 
into the program and the generator continues to churn 
out results, and the feedback loop continues, until the 
generator produces data that the discriminator believes 
meets the quality expectations. In the case of an image, 
this is the generator “fooling” it into thinking a generated 
output is real. GANs are very new and their capabilities 
are still being explored, but they are the systems used, 
so far, to produce “deep fakes,” contemporary works of 
art, music, or writing in the style of long dead masters, or 
to create entirely unique compositions by the AI system. 

E. Risks and Benefits — Machine Learning

Machine learning programs are only as good as their design 
and training.  Just as humans risk injury when they rush to 
run great distances or perform complex sports maneuvers 
without proper preparation, machine models risk generating 
faulty outputs, or even causing harm if they are not well-de-
signed and if their training is not continuously monitored 
and updated. That these systems “learn” without additional 
human programming does not mean they should operate 
without human oversight. If a system initially learns from a 
limited, badly organized, or insufficiently representative data 
set — whether the limits are due to the size of the data, the 
variety of data, the completeness of the data, or the veracity 
of the data — it cannot work properly “in the wild.”  

C. Deep Learning

A subset of machine learning, Deep Learning simply re-
fers to the number of total connections a program makes 
in between the input layers and output layers, in that it 
has more than three layers.  Between input and output 
layers are “hidden” layers which perform additional 
calculations through refining the weights applied to the 
various features of the data.  The output layer generates 
the final result to the user, usually a “recommendation,” 
along with the confidence level of the result (“yes, that 
animal is a cat”).  

Deep learning models, particularly when applied to 
CNNs or RNNs, comprise exceptionally powerful sys-
tems for complex tasks such as language translation that 
could not be accomplished by rules-based AI, or by linear 
machine learning where there is only one computational 
pass of the data from input to output.   The “looping” 
feature of deep learning models allow them to use both 
forward and backward computational paths through the 
layers, making it possible to identify obscure or highly 
nuanced patterns and relationships in the data.39

In addition to editing its own inferential reasoning 
pathways, Deep Learning program systems can create 
entirely new, additional hidden layers between the input 
layer and output layer without human intervention. This 
is part of what makes “transparency” or “explainability” 
so challenging for the users, or even designers, of a 
deep learning program. The path through the computa-
tional layers may be different even for consecutive data 
inputs, and the structure of the network processing is 
changing and evolving in real time. Following exactly 
what happened (what computations were applied, in 
what sequence, and with what factors or features in-
volved) can be difficult to observe or recreate.  However, 
there is ongoing research on explaining deep learning 
systems, attempting to make progress toward seeing 
into the “black box” to understand, describe, or replicate 
what the systems did to reach a particular conclusion.40 

VI. AI — Machine Learning (continued)
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VI. AI — Machine Learning (continued)

down, but the limitations of human bodies had not been 
included in the code. Thus, if put into a real environment, 
such systems would cause severe harm to a pilot and costly 
equipment.  Likewise, reinforcement learning systems must 
have the “common sense” programming to set general pa-
rameters as well. Notably, some systems of security robots, 
which are hard-coded to avoid confrontational humans, 
sought escape by diving into a nearby fountain.44 

When CNNs are applied to image models, they can be 
highly successful, reliably recognizing not only that a dog 
is not a cat but that a Labrador retriever is not a Pekingese. 
However, if poorly trained, they will distinguish wolves 
from dogs simply on the basis of snow in the picture, or 
mis-categorize men and women of particular races, or with 
specific health conditions. When moving beyond image 
recognition to individual identification systems such as 
facial recognition, models have been repeatedly shown 
to fail badly when the training datasets are insufficiently 
diverse and representative of the faces that will be en-
countered once the system goes into production.45 There 
are certainly facial recognition systems now that have 
corrected this problem and are highly accurate across 
all demographics without significant variance, but these 
systems remain in the minority (and are the most expen-
sive) of those available for commercial use. Facial analysis 
systems that attempt to categorize people by gender, or 
identify characteristics or emotions remain highly flawed 
for technical accuracy as well as ethically suspect.

RNNs face the biggest challenges related to transparency, 
as discussed above, as they have an element of inscrutabil-
ity to their structure that makes them difficult to explain or 
replicate.  Explaining fully how the loops between layers in 
RNNs change the data and thus impact the output score re-
mains an elusive goal for explainable AI.  While it may not be 
of immediate importance to know why an RNN offers one 
translation of a phrase or another, it certainly is important to 
know that these neural network outputs suffer from fallibil-
ities that mean they can make inaccurate or inappropriate 
translations which humans should be cautious to trust.46

This delineation of the risks of various aspects of ML 
should not be read as outweighing the many benefits, 
conveniences, cost savings, and efficiencies that have 
already resulted from these systems, with more being 
considered and developed all the time. From expanding 
access to credit and financial systems, improving health 
care, supporting educational opportunities, and the entire 
infrastructure of connected devices and home services, 
ML has improved our lives in many ways. These gains will 
only continue to grow. Specifying the risks simply outlines 
the detailed and critical responsibility incumbent on those 
who develop, sell, and employ such systems to use (and 
refrain from using) them responsibly, in alignment with 
ethical values and a prioritization of human well-being.

Machines learn under guidance, application, and eval-
uation by humans. If machines are applied to problems 
that do not truly match their design, then they will deliver 
poor results. If a machine is directed to find patterns in 
data that is too limited to fully represent the knowledge 
the computer needs to solve the problem presented, the 
machine learning program will be underfit to the prob-
lem.41  One example of the underfitting problem comes 
from uses of machine learning for predicting complex 
disease dynamics.  If a machine is asked to identify the 
major causal drivers for a disease, which nurses and 
therapists know is strongly influenced by social factors 
but the machine is only given laboratory test data to 
learn from, then it will be underfit for the purpose of 
helping medical teams manage the disease.   Likewise, 
if a similar system is only trained on data from a single 
hospital system that uses a single set of vendors to 
provide health records and reports of diagnostic tests, 
the learning system may be underfit when applied to 
another hospital system using another vendor›s records.

As has been covered extensively in the media and ac-
ademia, machines that replicate historical human-run 
systems, and which are therefore trained on the historical 
data from those systems, are assuredly going to perpetu-
ate any biases or inequities of those systems. For example, 
predictive models such as those that are used by financial 
organizations to predict loan risk, if trained solely on his-
torical loan data, will exhibit the same historic biases tied 
to race, educational institutions, or other discriminatory 
factors. That is, some customers will be privileged in their 
receipt of loans while others are systematically excluded. 
In fact, in such systems, the biases can be perpetuated 
even when the programming has attempted to minimize 
such aspects, because the systems are capable of such 
nuanced associations (e.g. when zip codes become prox-
ies for socio-economic status or race).

These bias challenges can sometimes be mitigated by ad-
dressing data quality, sufficiency and representativeness, but 
the biases are not always easy to identify and isolate.42 Alter-
natives to improve these models include designing systems 
using reinforcement learning (without the need for historical 
data), or synthetic data sets, but these are also not immune 
to the inherent bias carried over by programmers and social 
structures and must be evaluated and monitored carefully.

While reinforcement learning models do not use historical 
data, they nevertheless sometimes produce undesirable 
outputs if their goals are not carefully designed and de-
fined.  For example, during the trials for fighter pilot systems, 
viewers watched reinforcement learning algorithms battle 
one another by spinning in loops at forces impossible for 
human pilots to withstand or by zooming towards the sky 
or the ground to avoid one another.43 The system had been 
designed to maximize points based on avoiding being shot 

employment, and global efforts toward environmental 
health and sustainable practices are all made feasible or 
significantly more effective by AI. Healthcare in particu-
lar has been entirely disrupted and generally improved 
by the capabilities of these systems.

As individuals, private companies, governments and 
regulators seek to safely and responsibly implement 
these programs into the everyday lives of individuals and 
infrastructures, they must understand the technology as it 
functions within the particular industry or application, and 
carefully consider where and how appropriate restrictions 
should apply. This paper will hopefully make that task 
easier, provide an understanding of the complexities, the 
opportunities, and the limitations of these programs so 
that they can be an overall benefit and boon to humanity.

AI is a field of science that encompasses technical, so-
cial, and policy considerations. As with any technology, 
there is no “neutral” system — the choices made of 
what to automate; how to determine the type, style, and 
features included; sourcing the data; and applying the 
system in specific contexts are all design choices that 
carry implications for equity and harm. Automating hu-
man functions and behaviors carries the inherent risks 
of automating human errors and shortcomings. 

However, AI systems can also add specific and extend-
ed value to many fields, providing efficiencies in cost 
and time, as well as accuracy and reliability. Mobile ser-
vices that provide banking, communications, and safer, 
smoother travel, among others, would not be possible 
without it. Low cost goods, access to education and 
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