
Table of Contents

Safety Components

Access Request Module Datasheet 2

Page: 1 of 6

Overview

The Access Request Module, CE-SA-017-0001 is intended to interface up to 4 guard-locks and a MachineMotionV2. The minimum configuration is 1 guardlock and 1 MachineMotionV2.

Features

Compatible with MachineMotion V2
Configuration-free: plug & play
Modules can be daisy-chained
On-board LED for power, fuse, and communication status indication, located on the bottom of the module
LED indicator displaying power status, fault alerts, safety status, and activation of an emergency stop triggered by the module
The access request module can be connected to up to 4 guardlock devices but only one of high duty (1 opening per hour).

Included cables

1x Safety Extension cable (5m) - CE-CA-102-5001__2
1x Dry Contact Jumper - CE-JP-000-0002
2x Safety Jumper - CE-SA-102-0001
2x Guard Lock T-Splitter - CE-SA-124-0001

Important Notes

Safety

The Access Request Module performs safety functions as a part of a whole installation or machine. A complete safety system normally includes sensors or input units, logic units and contactors or output units. The manufacturer of the installation or machine is responsible for ensuring proper functioning of the whole system. The total concept
of the control system into which the Safety Module is integrated must be validated by the user. Vention cannot guarantee all specifications of an installation or a machine without being responsible for the risk assessment and the design of the safety system. Vention takes over no liability for recommendations which are given or implied in the
following description.

The following items must be taken into consideration during the design, risk assessment & installation of the safety system:

The Safety Module shall not be put into operation only after the safety functions have been tested during the commissioning.
The use of the Safety Module does not prevent the automatic reset of devices connected to the Safety OUT port.
The use of the Safety Module does not prevent the automatic start of the devices connected to the Safety OUT ports. According to EN IEC 60204-1:2018 and EN ISO 10218-1:2011 it is not allowed to restart automatically after emergency stop. Therefore the control systems of the connected devices have to disable the automatic start
after emergency stop.
Opening the Safety Module or implementing unauthorized changes voids any warranty.

Functional error! Danger to life, risk of serious injuries or property damage

The Smart Access Request Module may only be connected to the equipment listed in this manual;
The Smart Access Request Module does not monitor the input redundant signals at the End Effector IN and Position IN ports. If the connected device at the Position IN port does not have monitoring of its output signals, the performance level of the safety function can be reduced;
If the a jumper is used for the Position IN port but a limit switch is connected to the End effector IN port, the performance level of the safety function can be reduced;
If devices with OSSD signals are connected to the both Position IN and End Effector IN ports, the device connected in the End Effector IN port shall accept OSSD inputs and be placed in cascade using the pins 1 and 3 as OSSD inputs;
As per ISO/TR 24119:2015, only 1 guardlock shall be high duty (opening the guardlock at a frequency greater than 1 per hour);
A maximum of 4 guardlock should be connected to maintain the performance level of the module;
Bypassing the guardlock with the Manual override may expose the operator to residual risk (heavy boxes in grippers, robot in wrong position);
The Smart Access Request Module is designed to operate in indoor environments without dust or high humidity. Dust and dampness may lead to malfunction. Do not install or operate the Safety Module outdoors.

Important Information

Shorting or overloading the guardlock port could trip the E-FUSE. To reset the fuse, a power cycle is needed.
As per ISO/TR 24119:2015, only 1 guardlock shall be high duty (opening the guardlock at a frequency greater than 1 per hour).
Bypassing the guardlock with the Manual override may expose the operator to residual risk (heavy boxes in grippers, robot in wrong position)

Technical specs

General Specifications

Item Specification

Part Number CE-SA-017-0001

Weight 0.8kg

Dimensions 19.0 x 15.0 x 9.0mm

Material

Bottom enclosure: Aluminum
Top enclosure: Aluminum

Operating Temp 0 to 40°C

Electrical Specifications

Item Specification

Nominal input voltage 24 VDC (Class 2 or SELV power supply*

Input voltage range 19.2 ~ 26.4 VDC

Operating power consumption

With light curtains (TX and RX) and muting
sensors: 8.4 W
With laser scanner and muting sensors: 8.4 W

Short circuit protection Internal E-FUSE IC

Max current allowed 2 A

Post-short current 250 mA

Release delay at 24 V < 40 ms

** Note: In North America the Safety Module shall be supplied by a certified class 2 power supply. In Europe, the Safety Module must be supplied by an SELV circuit. When powered by the MachineMotion those requirements are met.

Physical Interface

Figure 1: Physical Interface

Access Request Module Datasheet

Page: 2 of 6

LED Indicators

Name LED Color Indicated (when ON)

POWER White 24 VDC supplied to module

COMM White EtherNet communication functional

FUSE Red Module internal fuse tripped

STATUS Off Disconnected

STATUS Green Connected

STATUS White Communication issue

STATUS Orange Error

STATUS Red E-Stop

STATUS Blinking Red User triggered E-Stop

STATUS Blinking Blue Processing

Functionality

The Access Request Module enables guard lock devices to be interfaced with a MachineMotion safety chain. A guard lock is a device that prevents a user to open a door or gate based on a Safety or Programming condition. The Safety conditions to be met is the “Cell safe” input and the “end effector” input. Those conditions are optional
meaning that if there is no residual risk involving an end effector in a cell, the end effector input can be jumped with the jumper CE-JP-000-0002. For the “Cell safe” input, it can be connected to a safe robot output or a fail safe inductive sensor CE-SN-010-0001.
Once everything is connected, software on the MachineMotion must be running in order to send the lock/unlock request. This was done to be flexible on the functionality. Pressing the buttons of the access request module sends a message to the MachineMotion. The MachineMotion can then send a request to lock/unlock the door. An
alternate condition might be that an unlock request parks the robot in a safe location before unlocking the door.
In order for an access request to be successful, the cell must be in a safe state. Therefore, Access request Modules must be integrated into your application. See below for MachineLogic and MachineLogic Python examples.

Making a Lock or Unlock Request

The Access Request Module will accept requests to unlock under the following conditions:

Interlocks are detected on the guardlock port connectors
The guardlock is closed and locked
The Position IN port is triggered & End Effector IN port is untriggered

Figure 2: Successful unlock sequence

The Access Request Module will accept requests to lock under the following conditions:

Interlocks are detected on the guardlock port connectors
The guardlock is closed and unlocked
The Position IN port is triggered & End Effector IN port is untriggered

Figure 3: Successful lock sequence

Port definitions

Figure 4: Access Request Module ports

Safety OUT - Pin-out - M12, male, 12-pin, A-Keyed

The Safety OUT port connects to the SAFETY IN port of another Safety Module (if daisy-chaining multiple safety modules) or to a MachineMotion V2.

Page: 3 of 6

https://docs.vention.io/technicaldocumentation/docs/access-request-module-datasheet
https://docs.vention.io/technicaldocumentation/docs/access-request-module-datasheet

Pin Function

Pin 1 24 VDC

Pin 2 0V

Pin 3 SAFETY OUT 11

Pin 4 SAFETY OUT 12

Pin 5 SAFETY OUT 21

Pin 6 SAFETY OUT 22

Pin 7 RESET +(24V)

Pin 8 RESET - (OUTPUT)

Pin 9 ETHERNET TX+ (auto-MDIX)

Pin 10 ETHERNET TX- (auto-MDIX)

Pin 11 ETHERNET RX+ (auto-MDIX)

Pin 12 ETHERNET RX- (auto-MDIX)

Safety IN - Pin-out - M12, female, 12-pin, A-Keyed

The Safety IN port connects to the SAFETY OUT port of another Safety Module (if daisy-chaining multiple safety modules) or to an E-Stop and Reset Module (CE-SA-007-0000). IMPORTANT: If the SAFETY IN port is not used, insert the included yellow jumper.

Pin Function

Pin 1 24 VDC

Pin 2 0V

Pin 3 SAFETY IN11

Pin 4 SAFETY IN 12

Pin 5 SAFETY IN 21

Pin 6 SAFETY IN 22

Pin 7 RESET +(24V)

Pin 8 RESET - (INPUT)

Pin 9 ETHERNET TX+ (auto-MDIX)

Pin 10 ETHERNET TX- (auto-MDIX)

Pin 11 ETHERNET RX+ (auto-MDIX)

Pin 12 ETHERNET RX- (auto-MDIX)

Door 1 & 2 - Pin-out - M12, female, 12-pin, A-Keyed

Pin Function

Pin 1 Lock signal A1 (24V fused)

Pin 2 0V A2

Pin 3 Guard lock contact 1&2 11

Pin 4 Guard lock contact 1&2 12

Pin 5 Guard lock contact 1&2 21

Pin 6 Guard lock contact 1&2 22

Pin 7 Gate Feedback 43 (24V)

Pin 8 Gate Feedback 44 (input)

Pin 9 NC

Pin 10 NC

Pin 11 NC

Pin 12 NC

Door 3 & 4 - Pin-out - M12, female, 12-pin, A-Keyed

Pin Function

Pin 1 Lock signal A1 (24V fused)

Pin 2 0V A2

Pin 3 Guard lock contact 3&4 11

Pin 4 Guard lock contact 3&4 12

Pin 5 Guard lock contact 3&4 21

Pin 6 Guard lock contact 3&4 22

Pin 7 Gate Feedback 43 (24V)

Pin 8 Gate Feedback 44 (input)

Pin 9 NC

Pin 10 NC

Pin 11 NC

Pin 12 NC

Position IN - Pin-out - M12, female, 4-pin, A-Keyed

Pin Function

Pin 1 24V fused

Pin 2 OSSD input 1

Pin 3 0V

Pin 4 OSSD input 2

End Effector IN - Pin-out - M12, female, 4-pin, A-Keyed

Pin Function

Pin 1 11

Pin 2 12

Pin 3 21

Pin 4 22

Status OUT - Pin-out - M12, male, 4-pin, A-Keyed

Pin Function

Pin 1 NC

Pin 2 OSSD output 1

Pin 3 0V

Pin 4 OSSD output 2

Mounting

Install the module mounting bracket (CE-HW-005-1002) to the extrusion with the screws provided (HW-FN-003-0018). Install the module onto the mounting bracket as illustrated below.

Figure 5: Module Mounting Figure 3: Module Mounting

Wiring Diagrams

Page: 4 of 6

Figure 6: Access Request Module wi th 4 guardlocks

Figure 7: Daisy-chaining Access Request Modules

Figure 8: Access Request Module wi th Robot Safety Module

Figure 9: Access Request Module wi th 2 guardlocks

*Note: Insert a black jumper into any unused input on this safety module for proper functionality. Yellow jumpers are reserved for unused safety ports on MachineMotion.

HTTP commands

The Access Request module can receive commands from HTTP to lock or unlock the doors. This enables a user to lock/unlock doors on events, like a push button press.

Route Data Type Format Description

http://localhost:4446/access-request json
{"serial-number": INT, "command": "lock" |

"unlock"}
Will try to lock the doors on the target device

HTTP /access-request return codes :

Code Full json payload

0 {“code”:0,”msg”:”Success”}

1
{“code”:1,”msg”:”Post must be of JSON type with
format {“serial-number”: INT, “command”: “lock”

2 {“code”:2,”msg”:”Smart Module not found.”,”errors”:[]}

3
{“code”:3,”msg”:”Smart Module not
connected.”,”errors”:[]}

4
{“code”:4,”msg”:”Smart Module is not an Access-
Request Module.”,”errors”:[]}

5
{“code”:5,”msg”:”Access-Request Module is not
accepting requests. Topic not initialized.”,”errors”:[]}

6
{“code”:6,”msg”:”Access-Request Module is not
accepting requests. Cell is not safe”,”errors”:[]}

7
{“code”:7,”msg”:”Access-Request Module is not
accepting requests. Door is Open.”,”errors”:[]}

8 {“code”:8,”msg”:”door is already locked.”,”errors”:[]}

9 {“code”:9,”msg”:”door is already unlocked.”,”errors”:[]}

10
{“code”:10,”msg”:”Access-Request Module was
unable to lock”,”errors”:[]}

11
{“code”:11,”msg”:”Access-Request Module was
unable to unlock”,”errors”:[]}

99 {“code”:99,”msg”:”error”}

MQTT topics

Device Type access-request

Page: 5 of 6

Topic Data Type Description

/available int (0 or 1) 0 = disconnected, 1 = connected

/errors string array Array of string which indicates all current errors

/thermistor int Temperature of the device in celcius

/safety-in int (0 or 1)
Status of the input voltage on safety-in port.
0 = 0V (Estop) , 1 = 24V (Good)

/safety-out int (0 or 1)
Status of the output voltage on safety-out port.
0 = 0V (Estop), 1 = 24V (Good)

/door-open int (0 or 1)
Indicates if a door is opened
0 = closed, 1 = open

/door-locked int (0 or 1)
Indicates if doors are locked
0 = unlocked, 1 = locked

/accepting-requests int (0 or 1)
Indicates if the module accepts lock/unlock requests
0 = not accepting, 1 = accepting

/cell-safe int (0 or 1)
Status of the input of the IN and END port. Status out
port.
0 = not safe, 1 = safe

/user-unlock-request int (0 or 1)
Status of the user request
0 = lock request, 1= unlock request

/active-request int (0 or 1)
Status of the request
0 = locked, 1= unlocking or unlocked

/transitioning int (0 or 1)
Indicates if there’s a transition between lock and
unlocked/unlocked and locked
0 = nothing, 1= transitioning

/lock-signal int (0 or 1) 0 = locked, 1= unlocked

Error codes

Code Errors Description

1
Error on safety output. Shortcircuit or

crossfault.
shortcircuit, cross fault, or wrong feedback

2 Error on safety input
shortcircuit, cross fault, wrong feedback, feedback not
simultaneous

9 Error on state of locking door. Door has a problem. Error in door signals / miswiring

10
Error on lock output. Shortcircuit or

crossfault.
shortcircuit, cross fault

11 Error with wiring or timing of safe state Signals not simultaneous

12
Error in door operation: Failure of operation

or manual override
shortcircuit, cross fault, or wrong feedback

Integration in MachineLogic

For any use-case requiring the use of the Access Request Module with MachineLogic Code-Free programming, please contact integrationsupport@vention.cc

MachineLogic Python Unlock Sequence Example

Below is an example of how the Access Request Module can be used in MachineLogic Python applications.

Safety Data

The Smart Access Request Module realizes the following safety functions:

System emergency stop output at the Safety OUT connector from the Safety IN port (E-stop_SafetyOUT);
Guardlock safety function without safe position input (GuardLock);
Guardlock safety function with safe position input (GuardLock_PositionIN).

For each of these functions, safety data can be found in the following tables. Due to potential fault masking, the safety data is dependent on the number of doors and their frequency of use.

The table below refers to the safety data with only one door or no door frequently used and up to 4 not frequently used doors:

Safety Function PL Cat. MTTFd DCavg PFHd

E-stop_SafetyOUT e 3 64 99% 8.84E-08

GuardLock e 3 64 99% 8.84E-08

GuardLock_PositionIN e 3 64 99%

The table below refers to the safety data with no door frequently used and up to 30 doors not frequently used doors or 1 frequently used doors and up to 4 not frequently used doors:

Safety Function PL Cat. MTTFd DCavg PFHd

E-stop_SafetyOUT e 3 64 99% 8.84E-08

GuardLock d 3 64 91.3% 2.13E-07

GuardLock_PositionIN d 3 64 91.3%

The above information have been calculated based on the following operation conditions:

Data Value Unit

dop 365 days/years

hop 24 hours/days

tcycle 8640 s/cycle

from machinelogic import Machine, ActuatorGroupfrom machinelogic import Machine, ActuatorGroup

from machinelogic import MachineException, MachineMotionException, ActuatorGroupException, ActuatorException, RobotExceptionfrom machinelogic import MachineException, MachineMotionException, ActuatorGroupException, ActuatorException, RobotException

Configuration ###### Configuration

The following code has been automatically generated from the configuration.# The following code has been automatically generated from the configuration.

If the configuration changes, please update the code below, and ensure that the names match.# If the configuration changes, please update the code below, and ensure that the names match.

machine = Machine()machine = Machine()

Program ###### Program

Start coding here!# Start coding here!

Documentation can be found at vention.io/resources/guides/machinelogic-python-programming-514# Documentation can be found at vention.io/resources/guides/machinelogic-python-programming-514

import requestsimport requests

from time import sleepfrom time import sleep

def request_access(machine_ip,module_serial_number, unlock = True):def request_access(machine_ip,module_serial_number, unlock = True):

 unlock_string = "unlock" if unlock else "lock"unlock_string = "unlock" if unlock else "lock"

 payload = {payload = {

 "serial-number": module_serial_number,"serial-number": module_serial_number,

 "command": unlock_string"command": unlock_string

 }}

 try:try:

 r = requests.post(r = requests.post(

 "http://localhost:4446/access-request","http://localhost:4446/access-request",

 json = payloadjson = payload

))

 finally:finally:

 return (r.status_code == 200, r.text)return (r.status_code == 200, r.text)

if __name__ == "__main__":if __name__ == "__main__":

 m = Machine()m = Machine()

 ip = '192.168.7.2'ip = '192.168.7.2'

 serial_number = 1110003 # serial number can be found on device labelserial_number = 1110003 # serial number can be found on device label

 def handle_module_status(topic, payload):def handle_module_status(topic, payload):

 print(topic, payload) # display incoming module statusesprint(topic, payload) # display incoming module statuses

 def handle_access_request(topic, payload): # callback for module button pressdef handle_access_request(topic, payload): # callback for module button press

 print("handling request", topic, payload)print("handling request", topic, payload)

 if not payload: # button is released, do nothingif not payload: # button is released, do nothing

 returnreturn

 is_unlock_request = topic.split('/')[3] == "button-unlock"is_unlock_request = topic.split('/')[3] == "button-unlock"

 success, info = request_access(ip,serial_number,is_unlock_request)success, info = request_access(ip,serial_number,is_unlock_request)

 print(info)print(info)

 machine.on_mqtt_event(machine.on_mqtt_event(

 f'safety-module-hub/access-request/{serial_number}/button-lock',f'safety-module-hub/access-request/{serial_number}/button-lock',

 handle_access_requesthandle_access_request

))

 machine.on_mqtt_event(machine.on_mqtt_event(

 f'safety-module-hub/access-request/{serial_number}/button-unlock',f'safety-module-hub/access-request/{serial_number}/button-unlock',

 handle_access_requesthandle_access_request

))

 machine.on_mqtt_event(machine.on_mqtt_event(

 f'safety-module-hub/access-request/#',f'safety-module-hub/access-request/#',

 handle_module_statushandle_module_status

))

 while True:while True:

 sleep(1)sleep(1)

Plaintext Copy

Page: 6 of 6

	Table of Contents
	Access Request Module Datasheet

