
COMPOSER

How to setup connectors and cue points
using Vindral CDN and Web SDK.

Version 1.1

2023�02�07

Copyright Realsprint AB 2021



Table of content

1 Introduction 2
1.1 Prerequisites 2
1.2 Topics 2

2 Setting up your RTMP-stream 3
2.1 Connect to the stream using the QOS Client 4

3 Creating the Vindral CDN Metadata Target 5
3.1 Sending your first metadata message 5
3.2 Use the QOS�Client to verify that the message has been broadcasted over the CDN 5

4 Using the /api/metadata/send API to send a message 6

5 Injecting metadata messages without using Composer 6
5.1 Postman example 6
5.2 Curl example 6

6 JSON or XML messages 7

7 Connectors and API Commands 8
7.1 Creating the connector 9
7.2 Adding ApiCommands 10
7.3 Dynamic parameters 11

8 Activating the Web API:s 11
8.1 Use HTTPS for encrypted communication and secure calls 11

9 Setting up API keys (apikeys.json) 12

10 Web SDK � subscribe to channel and cue points 13

Page 1 Copyright 2022 Realsprint AB



1 Introduction
Vindral Composer is a real-time video compositing software for event-driven video compositing, color
correction, chroma key, visual effects, and live streaming.

Composer is part of the Vindral product family, which consists of Composer, Studio (encoder), and Streaming
Engine �Playout/CDN�. Both Composer and Studio are compatible with the Vindral Streaming Engine �CDN�,
and together they create a scalable end-to-end Ultra Low Latency streaming solution fed by real-time video
compositions.

In this technical document, we will focus on Connectors and Cue points and describe how to setup, use, and
consume metadata messages (cue) points using Composer, Vindral CDN, and the Vindral Web SDK.

For more generic documentation of Composer, see the User Guide and https://docs.vindral.com

1.1 Prerequisites
This guide does not describe the basics of Composer or how to install or operate Composer.

Before continuing, please make sure you have basic knowledge of the following topics and how to use
Composer:

● Settings
● Scenes
● Inputs, operators, and targets
● RTMP-target
● Connectors

For basic information on the topics above, please read the Composer User Guide.

In order to follow the instructions in the guide, you also need:

● Composer installed on your workstation or server.
● Access to Vindral CDN

○ Access to ingest RTMP into a channel within the Vindral CDN
■ Knowledge about the Private ID of your stream. This ID is provided by RealSprint and is

unique for your stream. The Private ID is used when ingesting the stream into the CDN.
■ Knowledge about the public Channel ID of your stream. This ID is provided by RealSprint and

is unique to your stream. The CHANNEL ID is used when subscribing to the stream, or when
connecting to the stream using the Vindral QOS Client.

■ Knowledge about the Public Endpoint of the Vindral CDN
● Access to the Vindral QOS-client. This is a web page provided by RealSprint.
● Access to the Vindral Web SDK. This is an npm package provided by RealSprint.

1.2 Topics
The topics covered in this document are:

● How to setup Connectors and API Commands
● How to activate the Web API:s
● How to setup API keys
● How to use the API:s to trigger a connector from an external application (http(s) calls)
● How to inject a metadata message (“cue point”) into a channel within Vindral CDN
● How to use the QOS-client to verify that the metadata message has been sent
● How to retrieve the metadata message (and video stream) using the Vindral Web SDK

Page 2 Copyright 2022 Realsprint AB



2 Setting up your RTMP-stream
In order to broadcast and receive metadata messages, you need an active channel within the Vindral CDN. To
activate a channel, content needs to be ingested and that is typically done by ingesting an RTMP stream from
Composer.

In order to ingest a stream, you need to know the Ingest URL and the Private ID of your channel.
A typical ingest URL followed by the channel PRIVATE ID will have the following syntax (example):

rtmps://fra1-ingest-01.cdn.vindral.com/live/your-private-id

Add an RTMP target to your scene, and use the ingest URL and Private ID provided by RealSprint as the
Primary RTMP server address:

Start the stream by pressing the Start sending button.

Page 3 Copyright 2022 Realsprint AB



2.1 Connect to the stream using the QOS Client

Use the Vindral QOS Client to connect to the stream and to verify that the channel is up and running.

The URL of the QOS-client, the Public Endpoint, and the public Channel ID of your channel, have been
provided by RealSprint.

Below is a screenshot of the QOS-client:

In order to be able to see incoming metadata messages in the QOS-client, make sure the Show Metadata
Events feature is enabled. If not, press unload, enable Show Metadata Events, Save settings, and press Load.

Page 4 Copyright 2022 Realsprint AB



3 Creating the Vindral CDN Metadata Target
To add support for metadata messages, you need to add a Vindral CDN Metadata Target to your scene.

Add the Vindral CDN Metadata Operator to your scene, and use the API URL for Timed Metadata (provided
by RealSprint) as the Vindral CDN API Endpoint.

The URL for Timed Metadata typically looks something like this (example):
https://fra1-ingest-01.cdn.vindral.com:444/timed-metadata/your-private-id
Note that this URL is not the same as the ingest URL, but the private id is the same.

3.1 Sending your first metadata message
To test the component, enter a test message into the Test Message to send field, and press the Send test
message button. If the message is sent successfully the Log Message field should display the message
Vindral CDN Metadata Target StatusCode: Created.

3.2 Use the QOS�Client to verify that the message has been broadcasted over the CDN
The message should arrive in the QOS client approximately 1.5 seconds after (assuming you are running
the QOS-client with a 1500 ms buffer). The message will be shown in the upper right corner of the
QOS-client:

Page 5 Copyright 2022 Realsprint AB

https://fra1-ingest-01.test.cdn.vindral.com:444/timed-metadata/realsprint_niclas_sk_79db3438-fafb-4e82-a903-c8bcaef9f585


4 Using the /api/metadata/send API to send a message
There are two ways of send a message using the Web API:s of Composer. The more advanced method is by
using Connectors (described later in this guide), and using the api/metadata/send API.

/api/metadata/send?targetid=[target_guid]&message=[message]

Parameters:
● targetid: private id of the Vindral CDN Metadata target
● message: message to send

The API method should be called using a GET method.

If your system has been configured to use API keys, you need to provide a valid key when calling the API. API
keys are described in a separate chapter later in this guide.

5 Injecting metadata messages without using Composer
Besides using Composer for ingesting metadata messages into Vindral CDN, you can use the API URL for
Timed Metadata to inject a message.
Use HTTP POST and put the message into the body of the HTTP call. There are many ways of testing this,
but you won’t be able to do a POST in a web browser (without plugins). In this example, we will use the
Postman application.

5.1 Postman example

Set the method to POST, and use the API URL for timed metadata and your Private ID as the URL. Add your
message to the Body and press the Send button.

If the command is executed successfully, the return status code should be 201 �Created). In Postman, the
return status code is shown in the lower right corner of the application.

5.2 Curl example

curl �XPOST -d "Testmessage" https://fra1-ingest-01.cdn.vindral.com:444/timed-metadata/your-private-id

Page 6 Copyright 2022 Realsprint AB

https://fra1-ingest-01.cdn.vindral.com:444/timed-metadata/your-private-id


6 JSON or XML messages
Metadata messages often contain more than just a single text message. In many cases, JSON or XML
messages are used in order to send multiple variables. Both JSON and XML messages are supported.
Below is an example of a JSON message containing two variables:

{"Parameter 1": "Value of parameter 1", "Parameter 2": "Value of parameter 2"}

Page 7 Copyright 2022 Realsprint AB



7 Connectors and API Commands
After setting up one or more scenes with relevant input sources, operators (effects), and outputs, you might
wanna control Composer from an external application. One such example might be a backend system used in
your application:

Composer exposes HTTP(S) WEB APIs;s which can be used for external application control - either
in-house/on-prem or as a service on the public Internet.

The API:s are divided into several parts and in this document we will focus on API:s for triggering Connectors
and API Commands.

Connectors can be used in many different ways, but in this document we will focus on how to setup,
use, and consume “cue points”, or metadata messages.
These metadata messages might also be referred to as out-of-band metadata.

Metadata messages are broadcasted separately from the audio and video stream and are only supported by
the Vindral CDN. If you are using a different CDN for playout of your streams, Vindral metadata messages will
not work.

Cue points or other types of metadata messages can be important for the synchronization of application
logic/graphics and stream content, or to send commands or data to all clients subscribing to the video stream.

A Connector can trigger several Actions (one or more), and Composer can serve any number of unique
Connectors.

Connectors are defined by a unique name, and are very easy to trigger using an http(s) GET request:

https://composer.internal/api/connector/trigger?value= "NoMoreBets"

In the example above, the machine name called composer.internal running Composer exposes a Connector
called NoMoreBets.

HTTPS is typically not available by default, unless your server/workstation has a valid certificate installed, or if
you are running private certificates in your server environment.

Page 8 Copyright 2022 Realsprint AB

https://composer.internal/api/connector/trigger?value=


To call the API:s without HTTPS, use the IP address of your server/workstation, or localhost as hostname.
HTTP calls require a port number (as specified in Composer Settings). The default port is 44333.

HTTP examples:

http://localhost:44333/api/connector/trigger?value= "NoMoreBets"
http://192.168.1.33::44333/api/connector/trigger?value= "NoMoreBets"

Triggering this Connector, using a valid API key, will trigger the actions defined for the NoMoreBets connector:

Actions can perform operations on all layers in Composer and operate on any effect, graphics layer, camera
layers, etc. It's common to combine several actions into a Connector. Here are a few examples of actions
(high level)

● Send cue points in streams - used for game/application synchronization, etc
● Change camera views
● Change scene
● Start/stop media clips
● Change volume
● Activate/deactivate effects
● Hide/show layers

In many scenarios, a combination of actions takes place in a single Connector. How the actions are set up
depends on the type of game, type of video compositing, type of event, etc.

Connectors can be defined for any arbitrary event. Within iGaming, such events can include game states as
NewRound, WinningNumber, PlaceYourBets, or similar.

7.1 Creating the connector
To create the connector for sending a cue point, add a new WebApi trigger by right-clicking in the
Connectors tab:

Give the Target a name of your choice. In this example we will name the Connector “My new api trigger”.

Page 9 Copyright 2022 Realsprint AB

https://composer.internal/api/connector/trigger?value=
https://composer.internal/api/connector/trigger?value=


7.2 Adding ApiCommands
After the connector has been created, you need to define a keyword that will be used when calling the APIs
and triggering the Connector.
As per default, the evaluation method is set to Contains which means that any API call that contains a value
that contains

In the example above the connector called “My new api trigger” is defined and listens to API-calls with this
syntax:

https://composer.internal/api/connector/trigger?value="mytrigger"

(The FQDN composer.internal is just an example of a hostname, You can also use HTTP and local IP or
localhost in your call)

When triggered three �3� actions will take place:

1. Start playback of the “Taipei_Fireworks_1080p_2997.mp4” video clip.
2. Set the metadata message to “MyPlayCuePoint” on the target “Vindral CDN Metadata Target”.
3. After 200 ms, send the metadata command

A Connector may also utilize parameters that are useful for some actions. One example is cue points where
Composer should send a cue point containing an eventid (or any other type of metadata). This
eventid/metadata can be supplied in any Connector definition and is used by some actions. Below is an
example call:

https://composer.internal/api/connector/trigger?value="WinningNumber"&Param1�"32"&apikey=494df910�9c
09�4c7d-b240�37ba8b358de8

Or without HTTPS and without an apikey:
http://your-ip�44433/api/connector/trigger?value="WinningNumber"&Param1�"32"
http://localhost�44433/api/connector/trigger?value="WinningNumber"&Param1�"32"

In the examples above, the Param1 value of 32 can be used in an Action where a cue point is ingested into the
outgoing video stream.

Page 10 Copyright 2022 Realsprint AB

https://composer.internal/api/connector/trigger?value=%22mytrigger
https://composer.internal/api/connector/trigger?value=%22WinningNumber%22&Param1=%2232%22&apikey=494df910-9c09-4c7d-b240-37ba8b358de8
https://composer.internal/api/connector/trigger?value=%22WinningNumber%22&Param1=%2232%22&apikey=494df910-9c09-4c7d-b240-37ba8b358de8
http://yourip:44433/api/connector/trigger?value=%22WinningNumber%22&Param1=%2232
http://yourip:44433/api/connector/trigger?value=%22WinningNumber%22&Param1=%2232


7.3 Dynamic parameters
Dynamic parameters are a way of forwarding incoming values from an API call to a parameter in a Vindral
input, operator, or target.
This is useful when the message itself contains non-static content, such as cue point identifiers, timers, or
any kind of unique data that is non-static.

Example:

https://composer.internal/api/connector/trigger?value="SendCuePoint"&Param1="32"

To pass the Param1 value into an API command, use the @@ prefix before the parameter name. Below is an
example of how the ��Param1 value is used for forwarding Param1 as a message (cue point) into the Vindral
CDN Metadata Target:

You can use multiple dynamic parameters, and you can use a parameter on multiple API commands.

8 Activating the Web API:s
Before you can utilize the Web APIs of Composer, you need to activate them using the Settings window.

Make sure the APIs are activated and set a PORT of your choice.

Also, make sure the server firewall does not prohibit communication on the selected port.

To activate the optional HTTPS support, provide the hostname into the Web API Https FQDN field and make
sure your server has a valid certificate.

8.1 Use HTTPS for encrypted communication and secure calls
We strongly recommend using HTTPS for all communication with Composer - even on private networks.

Page 11 Copyright 2022 Realsprint AB

https://composer.internal/api/connector/trigger?value=%22WinningNumber%22&Param1=%2232%22&apikey=494df910-9c09-4c7d-b240-37ba8b358de8


9 Setting up API keys (apikeys.json)
API keys are used to protect the Web API:s in Composer from unauthorized access. By default Composer
comes with no defined API keys which means that the API:s are accessible by anyone that can reach the
server via the local network or via the internet. This is not a very secure setup, and we strongly recommend
using API keys.
You can define any number of API keys, and depending on your setup, architecture, and security policies you might
only need one API key, or, you can create multiple API keys and share the keys with different backend systems.
API-keys are defined in a JSON file, apikeys.json, found in the application root folder.

Below is an example in which two API keys has been defined:

If API-keys are defined in apikeys.json, any API-call must include a valid API-key in order for the API-call to be
accepted. If no API keys are defined, no API key is required.

Example of an Api-call which includes an apikey query parameter:
https:
https://composer.internal/api/connector/trigger?value="WinningNumber"&Param1="32"&apikey=494df910-9c09
-4c7d-b240-37ba8b358de8

http:
https://composer.internal:44433/api/connector/trigger?value="WinningNumber"&Param1="32"&apikey=494df91
0-9c09-4c7d-b240-37ba8b358de8

Page 12 Copyright 2022 Realsprint AB



10 Web SDK � subscribe to channel and cue points
The Vindral Web SDK can be used to create a web page or application that connects to a channel, play the
video stream, and subscribe to metadata messages.

Below is a very simple example that connects to a stream, and logs all incoming metadata messages in the
web browser Console. The example will create an instance of the Core Player which is a bare-bone player
without any visible controls.

This document does not cover how to install the Web SDK, or setting up build steps.

import {Vindral} from '@vindral/web-sdk'

const vindral = new Vindral({url:'https://public-end-point', channelId:

'your-public-id'})

vindral.attach(document.getElementById('root'))

vindral.connect()

vindral.on('metadata', (metadata)=>{

console.log(metadata)

})

Replace your-public-id with the actual public channel id, and the public-end-point with Public Endpoint of
the Vindral CDN.

For more information on Vindral Web SDK, see the online documentation.

Page 13 Copyright 2022 Realsprint AB


