

Integrating the

Access PaySuite Mobile SDK

October 2023

Introduction
The Access PaySuite Mobile SDK provides a simple integration to process payments on the Access PaySuite payment platform via a Mobile App. This

document will help you with the process of integrating to the SDK.

There are two SDK’s developed by Access PaySuite for the iOS and Android Mobile apps.

The Access PaySuite Mobile SDK has been developed to integrate into one of three Access PaySuite payment platforms. Before integrating the SDK into your

Mobile App, you will need to register for an account onto one of these payment platforms. For further information about the payment platform integration

please refer to the following:

• Advanced Payments (AP) – Integrating the Access PaySuite Mobile SDK, Advanced Payments (AP) - (Mobile SDK – Integrating AP.pdf)

• Evolve – Integrating the Access PaySuite Mobile SDK, Evolve - (Mobile SDK – Integrating Evolve.pdf)

• Secure Bureau Service (SBS) – Integrating the Access PaySuite Mobile SDK, Secure Bureau Service (SBS) - (Mobile SDK – Integrating SBS.pdf)

You should also refer to:

• Access PaySuite Mobile SDK PCI Compliance Statement (Mobile SDK – PCI Compliance Statement.pdf)

Development guidelines
All app developers will need to take into consideration the following features when building an app which integrates with the Access PaySuite Mobile SDK.

• Root/Jailbreak detection

• Strong User IDs

• Secure Cookie Storage

• Developers will be responsible for SSL pinning against your app

The mobile SDK is available via GitHub at:

• Android: https://github.com/pay360/Pay360-Android-Mobile-SDK

• iOS: https://github.com/pay360/Pay360-iOS-Mobile-SDK

https://github.com/pay360/Pay360-Android-Mobile-SDK
https://github.com/pay360/Pay360-Android-Mobile-SDK
https://github.com/pay360/Pay360-Android-Mobile-SDK
https://github.com/pay360/Pay360-Android-Mobile-SDK
https://github.com/pay360/Pay360-Android-Mobile-SDK
https://github.com/pay360/Pay360-Android-Mobile-SDK
https://github.com/pay360/Pay360-Android-Mobile-SDK
https://github.com/pay360/Pay360-Android-Mobile-SDK
https://github.com/pay360/Pay360-iOS-Mobile-SDK
https://github.com/pay360/Pay360-iOS-Mobile-SDK
https://github.com/pay360/Pay360-iOS-Mobile-SDK
https://github.com/pay360/Pay360-iOS-Mobile-SDK
https://github.com/pay360/Pay360-iOS-Mobile-SDK
https://github.com/pay360/Pay360-iOS-Mobile-SDK
https://github.com/pay360/Pay360-iOS-Mobile-SDK
https://github.com/pay360/Pay360-iOS-Mobile-SDK
https://github.com/pay360/Pay360-iOS-Mobile-SDK

Development pre-requisite
iOS
The Access PaySuite iOS SDK enables you to incorporate our payment-handling capabilities into your mobile applications for Apple devices.

This SDK is available for native iOS applications developed in Objective-C or Swift, as well as other hybrid mobile frameworks like React Native or Xamarin.

Prerequisites for running/building a project

• iOS 9+

• XCode 10+

Android
This is Android mobile SDK for you to integrate Access PaySuite to your Android mobile app. It is available for native Android applications (Java/Koltin) and

other hybrid mobile framework for example React Native, Xamarin, etc.

Prerequisites for running/building the project
At minimum Android 4.1 (API level 14)

Processing pre-requisite
When processing a payment or verification in the Mobile SDK, your chosen payment platform integration will provide the required data. This will consist of

the following:

 Referred to as in
Advanced Payment

Referred to as in Evolve Referred to as in SBS

Integrator Identifier
{{integrator_id}}

instId merchantId merchantId Used to identify you as the merchant integrating into
the Mobile SDK

Client Access Token
{{client_access_token}}

clientToken sessionId sessionId Used as a one-time token to process a single payment
or verification request

Authorisation
The Mobile SDK must be initialised with a valid Client Access Token to process a payment. Once obtained, the following implementation should be

performed.

Create the credentials
iOS
let credentials = new PPOCredentials()

 credentials.token = {{client_access_token}}

 credentials.installationId = {{integrator_id}}

 credentials.environment = {{environment}}

Android
PPOCredentials credentials = new PPOCredentials({{client_access_token}}, {{integrator_id}}, {{environment}})

The credentials object will be used in the next section to process a payment.

Card Payment
The Mobile SDK supports the processing of card pays in the following ways:

• Card number and payment data provided by the payer to process a payment

• Stored token from a previous payment or verification supplied to process a payment

The integration for each route is described below.

Payment using card number
The processing of making a payment with card number and payment details is as follows.

• Mobile App validates the card number

• Mobile App creates a payment object and populates it with card data

• Mobile App submits the payment

• Mobile SDK submits the payment data for processing

• (conditional) Mobile SDK opens a WebView to process the 3DS challenge

• Mobile SDK resumes the payment after 3DS challenge is complete

• Mobile SDK returns the payment response

• Mobile App handles the payment response

Validate card number

iOS
let luhnCheck = PPOLuhn.init(self)

luhnCheck.validateCreditCardNumber(cardNumber)

Android
boolean isCardValid = PPOLuhn.validateCreditCardNumber(cardNumber);

Create Payment

iOS
let payment = PPOPayment.init(self)

payment.credentials = credential

payment.card = card payment.address

= billingAddress payment.customer =

customer payment.providerId =

providerId

Android

PPOPayment payment = new PPOPayment(this, this)

 .setCredentials(this.credentials)

 .setCard(card)

 .setBillingAddress(billingAddress)

 .setCustomer(customer)

 .setProviderId(providerId);

The key attributes within the request are documented below.

credentials Object created in the “Create the credentials” section

card Object containing the card payment data

billingAddress (Optional) Object containing the billing address

Note: some of the billing address fields are mandatory to perform 3DS v2.1. Therefore, if the data has not been previously provided, it
must be passed into the Mobile SDK.

customer (Optional) Object containing the customer information

providerId This field indicate the payment platform to be used for processing the payment. Can be one of the following values.

• “AP”
• “EVOLVE”
• “SBS”

If not supplied, then “AP” will be set as default.

Submit Payment

iOS
self?.payment!.processGuestPayment { (Data:

PPOPaymentResponse) in

print(Data.transactionId) } failure: { (error) in

print(error)

 }

The payment response is handled by the result of calling the method above. Your Mobile App must implement appropriate code to handle the different

states.

Android
 this.payment.processGuestPayment();

The payment response must be handled by a delegate function

@Override public void cardPaymentProceedWithSuccess(PPOPaymentType paymentType, PPOPaymentResponse

response) {

}

@Override public void cardPaymentProceedWithFailure(PPOPaymentType paymentType,

String reason) { }

Payment using stored card
The processing of making a payment using a stored card is as follows.

• Mobile App creates a payment object and populates it with cardToken data

• Mobile App submits the payment

• Mobile SDK submits the payment data for processing

• (conditional) Mobile SDK opens a WebView to process the 3DS challenge

• Mobile SDK resumes the payment after 3DS challenge is complete

• Mobile SDK returns the payment response

• Mobile App handles the payment response

The implementation is the same as “Payment using card number” above. However, instead of populating the payment object with card data, this should be

populated with cardToken data.

Payment Objects
Creating a payment object enables you to set the following attributes.

Card iOS
let card = PPOCard() card.pan = is3DS ? "9903000000005131"

: "9903000000000017" card.cvv = "123" card.expiry =

"0117" card.cardHolderName = "John Smith"

Android
PPOCard card = new PPOCard()

 .setPan(is3DS ? "9903000000005131" :

"9903000000000017")

 .setCv2("123")

 .setExpiryDate("0117")

 .setCardHolderName("John Smith");

Card Token

iOS
let card = PPOCard() card.token = "CARD TOKEN"

card.cvv = "123" card.lastFour = "LAST 4 DIGITS OF

THE CARD NUMBER"

Android
PPOCard card = new PPOCard()

 .setToken("CARD TOKEN")

 .setCv2("123")

 .setLastFour("4444");

Billing Address
iOS
let billingAddress = PPOBillingAddress()

billingAddress.line1 = "YOUR ADDRESS LINE 1"

billingAddress.line2 = " YOUR ADDRESS LINE 2"

billingAddress.line3 = " YOUR ADDRESS LINE 3"

billingAddress.line4 = " YOUR ADDRESS LINE 4"

billingAddress.city = "YOUR CITY"

billingAddress.region = "YOUR REGION"

billingAddress.postcode = "YOUR POSTCODE"

billingAddress.countryCode = "GBR"

Android
PPOBillingAddress address = new PPOBillingAddress()

 .setLine1("YOUR ADDRESS LINE 1")

 .setLine2(" YOUR ADDRESS LINE 2")

 .setLine3(" YOUR ADDRESS LINE 3")

.setLine4(" YOUR ADDRESS LINE 4")

 .setCity("YOUR CITY")

 .setRegion("YOUR REGION")

 .setPostcode("YOUR POSTCODE")

 .setCountryCode("GBR");

Customer iOS
let customer = PPOCustomer()

 customer.email = "YOUR EMAIL ADDRESS"

customer.dateOfBirth = "120479" customer.telephone

= "YOUR TELEPHONE NUMBER" customer.merchantRef =

"YOUR CUSTOMER REFERENCE"

Android
PPOCustomer customer = new PPOCustomer()

 .setEmail("YOUR EMAIL ADDRESS")

.setDateOfBirthday("120479")

 .setTelephone("YOUR TELEPHONE")

 .setMerchantRef("YOUR CUSTOMER REFERENCE");

Custom Fields iOS
let customFieldSDKVersion = PPOCustomField()

customFieldSDKVersion.name = "sdkVersion"

customFieldSDKVersion.value = "10.1"

 let customFieldMerchantAppName = PPOCustomField()

customFieldMerchantAppName.name = "merchantAppName"

customFieldMerchantAppName.value = "Test App"

 let customFieldMerchantAppVersion = PPOCustomField()

customFieldMerchantAppVersion.name = "merchantAppVersion"

customFieldMerchantAppVersion.value = "0.1"

 let customFieldsSet = NSMutableSet() customFieldsSet.addObjects(from: [customFieldSDKVersion,

customFieldMerchantAppName, customFieldMerchantAppVersion])

Card Verification
The Mobile SDK supports the verification of a card which returns a token that can be used to process subsequent payments.

The processing of verifying a card number is as follows.

• Mobile App validates the card number

• Mobile App creates a payment object and populates it with card data

• Mobile App submits the verification

• Mobile SDK submits the payment data for verification

• (conditional) Mobile SDK opens a WebView to process the 3DS challenge

• Mobile SDK resumes the verification after 3DS challenge is complete

• Mobile SDK returns the verification response

• Mobile App handles the verification response

The implementation to validate the card number and create a payment object is the same as “Payment using card number” above.

The implementation to Submit the verification is described below.

Submit the verification
iOS
self?.payment!.processVerifyRequest { (Data:

PPOPaymentResponse) in

print(Data.transactionId) } failure: { (error) in

print(error)

 }

The payment response is handled by the result of calling the method above. Your Mobile App must implement appropriate code to handle the different

states.

Android
 this.payment.processVerifyRequest();

The payment response must be handled by a delegate function

@Override public void cardPaymentProceedWithSuccess(PPOPaymentType paymentType, PPOPaymentResponse

response) {

}

@Override public void cardPaymentProceedWithFailure(PPOPaymentType paymentType,

String reason) { }

