

Chromasens GEN<i>CAM-SDK | Manual

R04 / 2021-06-16

GenICam_SDK.docx 2

Table of Contents

1 General information 3

1.1 About Chromasens 3

1.1.1 Contact information 3

1.1.2 Support 3

1.2 Conventions used in this manual 4

1.2.1 Styles 4

1.2.2 Symbols 5

1.2.3 List of abbreviations 5

2 General aspects of the API 7

3 Getting started 8

3.1 Initialization of the SDK 8

3.2 Connecting to a camera 8

3.3 Getting and setting features 9

3.4 Acquiring images 10

3.5 Examples 11

3.5.1 Visual Studio Example Projects 11

3.5.2 Build examples 11

4 List of SDK-functions 13

4.1 Init/Deinit-functions 13

4.2 Connecting and closing a device 13

4.3 Getting and setting device parameters 16

4.4 Functions related to image acquisition 23

4.5 File transfer functions 27

4.6 Memory transfer functions 28

4.7 Helper functions 29

4.8 Enumerations 31

4.9 Structures 34

5 Installation 38

5.1 Windows installation 38

5.1.1 Installer Contents 38

5.2 Linux installation 38

5.2.1 Preparation 38

5.2.2 Step by Step Installation Ubuntu 18.04 38

5.2.3 Installer Contents 39

GenICam_SDK.docx 3

1 General information

1.1 About Chromasens

The name of our company, Chromasens, is a combination of 'Chroma' which means color, and
'Sens' which stands for sensor technology.

Chromasens designs, develops, and produces high-quality and user-friendly products:

◼ Line scan cameras

◼ Camera systems

◼ Camera illumination systems

◼ Image acquisition systems

◼ Image processing solutions

Today, Chromasens GmbH is experiencing steady growth and is continually penetrating new
sales markets around the globe. The company's technologies are used, for example, in products
and for applications such as book and document scanners, sorting systems and inspection
systems for quality assurance monitoring.

Customers from all over the world of a wide range of industrial sectors have placed their trust in
the experience of Chromasens in the field of industrial image processing.

1.1.1 Contact information

Chromasens GmbH
Max-Stromeyer-Str. 116
78467 Konstanz
Germany

Phone: +49 (0) 7531 / 876-0
Fax: +49 (0) 7531 / 876-303
Email: info@chromasens.de
HP: www.chromasens.de

1.1.2 Support

Chromasens GmbH
Max-Stromeyer-Str. 116
D-78467 Konstanz
Germany

Phone: +49 (0) 7531 / 876-500
Fax: +49 (0) 7531 / 876-303
Email: support@chromasens.de
HP: http://www.chromasens.de/en/support

Visit our website at http://www.chromasens.de which features detailed information on our
company and products.

mailto:info@chromasens.de
http://www.chromasens.de/
mailto:support@chromasens.de
http://www.chromasens.de/en/support
http://www.chromasens.de/

GenICam_SDK.docx 4

1.2 Conventions used in this manual

1.2.1 Styles

Notification

To ease the use of the document and to clearly indicate the type of the used data different colors for the
different elements are used. Three different colors are used when displaying elements in tables:

Enumerations:

For example:

csiEventType Defines events which can be received from the SDK

Definition typedef enum csiEventType {
 CSI_EVT_NEWIMAGEDATA = 0x00,
 CSI_EVT_ERROR = 0x01,
 CSI_EVT_MODULE = 0x02,
 CSI_EVT_CUSTOM = 0x1000
} csiEventType;

Elements CSI_EVT_NEWIMAGEDATA: New image data received
CSI_EVT_ERROR: Error occurred in the SDK
CSI_EVT_MODULE: General event notification
CSI_EVT_CUSTOM: A custom event was triggered

Structures:

For example:

Struct-name csiDiscoveryInfo

Variable type Element name Description

uint32_t numDevices

double progress

bool discoveryRunning

Functions:

For example:

csiDiscoverDevices Searches for the devices currently connected to the system

Syntax csiErr csiDiscoverDevices(csiDiscoveryInfo* discoveryInfoOut,
 uint64_t timeoutMilliseconds,
 csiDiscoveryInfoCallbackFunc discCallbackFunc = NULL,
 const char* additionalSearchPaths = NULL,
 bool overrideSearchPath CSI_DEFAULT_PARAM_FALSE);

Parameters: In:

timeoutMilliseconds: The amount of time to search on a specific transport layer for a device
discCallBackFunc: pointer to a callback function which gets called when a result was received

AdditionalSearchPaths: as default only the paths given in the system variable “GENICAM_GENTL64_PATH” are being searched for the
used transport layers

overrideSearchPath: If set, only the given path is searched for transport layers to use.

Out:

discoveryInfoOut: The structure will be filled with the available devices

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

GenICam_SDK.docx 5

1.2.2 Symbols

CAUTION

 Indicates a potentially hazardous situation or task, which, if not
avoided, may result in minor or moderate injury.

Indicates a potentially hazardous situation or task, which, if not avoided, could
result in damage to the product or the surrounding environment.

Indicates a helpful tip.

More detailed information can be retrieved online.

1.2.3 List of abbreviations

Abbreviation Meaning Explanation

CCM Color conversion matrix The CCM supports the conversion from for
example RGB to sRGB or any user-defined
conversion

Corona II LED illumination Chromasens product

DSNU Dark signal non-
uniformity

Irregularity in the dark image

GenICam Generic interface for
cameras

Generic programming interface for industrial
cameras administered by the European
Machine Vision Association

www.emva.org

CTI Common Transport
Interface

A GenTL Producer implementation as
dynamic loadable platform dependent library

GCT GenICam Control Tool Graphical user interface using the SDK.
Provides a graphical way to configure devices
using different TLs.

GenICam_SDK.docx 6

GenApi GenICam Module -

GenTL Generic Transport Layer -

GenTL
Consumer

A library or application
using an implementation
of a Transport Layer
Interface

-

GenTL
Producer

Transport Layer Interface
implementation

-

LED Light emitting diode -

PRNU Photo response non-
uniformity

Difference in sensitivity of the individual pixels

ROI Region of interest -

RS485 ANSI standard defining the electrical
characteristics of drivers and receivers for use
in serial communications systems.

SFNC Standard Feature Naming
Convention

Document of the GenICam standard, which
provides feature names for common camera
features.

VSync Vertical synchronization Frame signal for an image (corresponds to
FVAL: frame valid)

GenICam_SDK.docx 7

2 General aspects of the API

The purpose of the Chromasens Gen<I>Cam-SDK is to provide a user friendly and easy way to
handle all Chromasens cameras regardless of the physical interface.

Requirements:

Supported operating systems:

Windows: Windows 10 Version 2

Linux: Ubuntu >= 18.X

Supported compiler:

Visual Studio >= 2015

GCC

GenICam_SDK.docx 8

3 Getting started

This chapter will describe the basic functions/sequences needed to handle the basic
functionality of the camera.

Ready to use-Examples are also shipped with the SDK in order to demonstrate the usage of the
SDK regarding getting/setting features and acquiring images.

3.1 Initialization of the SDK

Before accessing any other functions of the SDK, an initialization needs to be done.

Please refer to 4.1 Init/Deinit-functions for the detailed description of the function csiInit.

After finishing the work with the SDK make sure to call the csiClose function. This makes

sure that all memory is freed again, and all connections/interfaces are properly closed again

3.2 Connecting to a camera

The use of the Chromasens Gen<I>CAM-SDK enables the user to use different transport layers
and interfaces for the available devices.

Depending on the requirements for your application these transport layers can be selected
during the device discovery process.

It is possible to use the standard search paths for the already installed transport layers.

These paths are set in the environmental variable “GENICAM_GENTL64_PATH” or for 32Bit-

applications: “GENICAM_GENTL32_PATH”.

This is the default behavior. To reduce the time needed for the discovery process a specific path
can be given. The search can also be limited to this single path when the
overrideSearchPath is set.

To establish a connection, you will need to call 2 functions:

csiDiscoverDevices and csiOpenDevice. Detailed information regarding the functions

can be found here: 3.2 Connecting to a camera

GenICam_SDK.docx 9

3.3 Getting and setting features

To configure the camera, so called features can be set and read by using the feature names
provided by the device-xml-file.

All features are of a specific type. The following different types exist:

- Boolean

- Integer

- Floating point

- String

- Command

- Register

- Enumeration

For each type, a “Get”- and “Set”-function does exist in the API. For example use
“csiGetFeatureFloat” to get a float parameter.

To retrieve additional information the function “csiGetFeatureParameter” exists. This function
will fill a csiFeatureParameter-structure which provides information about the display name,
minimum and maximum values, etc. This function is especially useful if you do not know the
valid thresholds of a parameter.

Please be careful when treating string features. You must not exceed the maximum length! This
can also be retrieved with the function “csiGetFeatureParameter”. The parameter

“maximumStringLength” of the csiFeatureParameter-structure will indicate the maximum string

length to set in the feature.

If the complete list of the device features needs to be retrieved, it is recommended to use the
function “csiIterateFeatureTree”. An example is shipped with the SDK to demonstrate the

usage of it.

To set the values please use the type-specific set-functions. For example, use
“csiSetFeatureInt” for an integer value.

These functions are described in detail in the chapter “3.3 Getting and setting features”.

GenICam_SDK.docx 10

3.4 Acquiring images

To get images from the device, it must be opened first by calling the appropriate functions.

The diagram below provides an overview of the functions which should be called during an
acquisition process.

Depending on the type of the device it is possible to retrieve multiple data streams in parallel
from the same device. This capability can be checked by using the
“csiGetNumberOfDataStreams”-function which is described in the chapter 4.4 Functions related
to image acquisition.

In general, two different ways in acquiring the images can be used:

1. Using Events (Events must be registered by the “csiRegisterEvent”-function prior to the
usage of the event.

2. Directly calling the csiGetNextImage-function

Independent of these two ways, the Acquisition from the device must be started first by calling
csiStartAcquisition.

If enough images have been processed this needs to be stopped again by calling
csiStopAcquisition.

After a received image is processed it must be released back into the receive buffer of the
acquisition engine by calling csiReleaseImage.

By failing to do so the user will cause an error as soon as all receive buffers have been filled by
the incoming data.

To grab images continuously the processing part needs to keep up with the speed of the camera.
Otherwise, images might be lost.

GenICam_SDK.docx 11

3.5 Examples

The SDK software package comes with a set of programming examples for C++. Currently there are
two examples included:

acquisition_basics Demonstrates how to discover and open a device and how to acquire images.

Locations:

Windows:
C:\Users\Public\Documents\Chromasens\GCT2\examples\basic

Linux: /usr/share/csgenicam/examples/basic

feature_iteration Demonstrates how to iterate through the feature tree of a device and how to set / get
features.

Locations:

Windows:

C:\Users\Public\Documents\Chromasens\GCT2\examples\feature_iteration

Linux: /usr/share/csgenicam/examples/feature_iteration

3.5.1 Visual Studio Example Projects

The Visual Studio projects for the two examples are also included in the SDK. These projects could the
found the same location as stated above. These example projects could also be built with CMake. The
following section explains how to build a project with CMake.

3.5.2 Build examples

To build the examples requires CMake version > v3.14 and a build environment. The steps to build the
examples are the same for both Windows and Linux:

1) Open the CMake GUI and select the examples root directory as the source folder of your project.

(“Where is the source code”)

2) Next select a directory where to generate the project files, should be somewhere outside the
source tree.

(“Where to build the binaries”)

3) Press the “Configure” button. After the first configuration it is required to manually set the path
to the CSGenICam CMake configuration files:

GenICam_SDK.docx 12

4) Press “Configure” again and “Generate” afterwards. The project is now configured and can be
opened and built from the directory selected in “Where to build the binaries”.

5) If the generated project is to be opened in Visual Studio, please follow the step mentioned in
section 3.5.1, to add the DLL search path for the application.

GenICam_SDK.docx 13

4 List of SDK-functions

4.1 Init/Deinit-functions

csiInit Initializes the SDK. Needs to be called first before any other function of the SDK is called!

Syntax csiErr csiInit(csiLogLevel logLvl = CSI_LOGLEVEL_WARN, , csiLogSinkCallbackFunc logCallbackFunc = NULL,

 csiLogUserData* userdata = NULL)

Parameters: In: logLvl: Defines the loglevel for the SDK. This will enable a closer debugging of the SDK. Use
 the enum csiLogLevel for setting the desired loglevel
 logCallbackFunc : An optional callback function for log messages coming from the SDK.
 userData: Optional user data that will be passed as parameter when the log callback function is
 called.

Out:Nothing

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: After the usage of the SDK make sure to call csiClose in order to free all memory again and not leaving any interfaces open.

csiClose Closes the SDK and frees all allocated memory and interfaces.

Syntax csiErr csiClose();

Parameters: In: Nothing

Out:Nothing

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

4.2 Connecting and closing a device

csiDiscoverDevices This function will look for attached GenICAM-devices on the available transport layers.

Syntax csiErr csiDiscoverDevices(csiDiscoveryInfo* discoveryInfoOut, uint64_t timeoutMilliseconds,

 csiDiscoveryInfoCallbackFunc discCallbackFunc = NULL,
 const char* additionalSearchPaths = NULL, bool overrideSearchPath = false)

Parameters: In: timeoutMilliseconds The time until when a response from a device needs to be received when doing a discovery
 discCallbackFunc Pointer to a callback function which receives information about the discovery progress.
 The callback function receives the current progress in %, number and names of the found
 devices Also a flag if the discovery is running is provided.
 additionalSearchPaths You can specify additional paths to search for transport layers. If you want to specify multiple
 paths, you need to divide the paths by using a “;”-sign
 overrideSearchPath If this flag is set, only the path(s) provided in “additionalSearchPaths” will be searched for the
 cti-files to load

Out: discoveryInfoOut pointer to a structure which will contain the information about the found devices. The
 information is the same provided to the callback function

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: By default, this function tries to use all available transport layers in the system. The search paths for the cti-files are set in the

environmental variable GENICAM_GENTL64_PATH (64 bit) or GENICAM_GENTL32_PATH(32 bit applications).

GenICam_SDK.docx 14

csiGetDeviceInfo A function to get information about the found devices in the system

Syntax csiErr csiGetDeviceInfo(uint32_t deviceIndex, csiDeviceInfo* deviceInfoOut)

Parameters: In: deviceIndex Index of the found device from the csiDiscoverDevices-function

Out: deviceInfoOut Detailed information of the found device. The information will be provided in this structure.
 The structure must be allocated on the caller side.

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: This function provides in more detailed information about the found devices such as device identifier, name, model, vendor,

serial number, interface description, interface-ID, username, version, consistency of camera package, TL-Producer-information,
access status

csiGetNumberOfTLProducers Returns the number of available transport layers in the system

Syntax csiErr csiGetNumberOfTLProducers(int32_t *numTLProducers);

Parameters: In: Nothing

Out: numTLProducers The number of transport layers detected in the environment.

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: The SDK uses the environment variable GENICAM_GENTL64_PATH to search for available transport layers. This function
allows to request the number of transport layers available through that environment variable.

csiGetTLProducerInfoByIndex Returns additional information about a transport layer.

Syntax CSI_DLL_EXPORT csiErr csiGetTLProducerInfoByIndex(csiTLProducerInfos *tlProducerInfos, uint32_t indexTL);

Parameters: In: intexTL: The index of the transport layer in the list.

Out: tlProdcrInfos: The structure holding additional information about the transport layer.

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: The index must be within 0 and the number of transport layer returned by csiGetNumberOfTLProducers.

csiGetTLProducerInfobyFilePath Returns additional information about a transport layer.

Syntax csiErr csiGetTLProducerInfobyFilePath(csiTLProducerInfos *tlProdcrInfos, const char* producerName)

Parameters: In: producerName: The name of the producer (usually the file path to the producer *.cti file)

Out: tlProdcrInfos: The structure holding additional information about the transport layer.

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: Similar to csiGetTLProducerInfoByIndex but using the name (file path) of the producer.

GenICam_SDK.docx 15

csiOpenDevice Open the device given by the index. The TL of this index is used

Syntax csiErr csiOpenDevice(const char* deviceIdentifier, csiHandle* deviceHandleOut, uint64_t timeoutMilliseconds,

 csiDeviceAccessMode openMode)

Parameters: In: deviceIdentifier Index of the found device from the csiDiscoverDevices-function

 timeoutMilliseconds Timeout in milliseconds until the device needs to be opened successfully
 openMode The device can be opened in different modes to enable/hinder concurrent access to
 the device.

 The following modes might be used:
 CSI_DEV_MODE_EXCLUSIVE: Only this process can communicate with the camera
 CSI_DEV_MODE_READ: Camera-parameters can be read and images can be
 acquired
 CSI_DEV_MODE_CONTROL: Camera-parameters can be read and written. Read-
 access by another process to the device is still possible

Out: deviceHandleOut: Handle to the device. This handle needs to be used to any successive call.

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: Depending on the used transport layer it might be necessary to use a longer timeout. Please refer to the information provided

with the specific TL.

csiCloseDevice Close the connection to the specific device

Syntax csiErr csiCloseDevice(csiHandle device

Parameters: In: device: Handle provided by the csiOpenDevice-function

Out:

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: To grant access to the device for other applications, the connection should be closed when it is not needed anymore.

The API will cleanup no longer needed memory when this command is executed.

GenICam_SDK.docx 16

4.3 Getting and setting device parameters

It is possible to retrieve and set parameters on the device/camera. The SDK additionally
provides the possibility to set parameters for other involved components such as the transport
layer module.

Therefore, it is possible to indicate this by changing the module parameter from the default
setting (CSI_DEVICE_MODULE) to the other components such as transport layer, stream, or
buffer module.

Please note that the parameters available for the different modules will differ significantly!

csiGetFeatureBool Retrieve a boolean feature from the device

Syntax csiErr csiGetFeatureBool (csiHandle device, const char* parameterName, bool* valueOut,
 csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function

parameterName: name of the feature to get (Not the display name!)
module: Module for which the parameter should be get. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be retrieved from the device-, transport layer-, interface- stream- or buffer-
 module

Out: valueOut: Pointer to a bool-value where the current value of the feature will be written to

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

csiSetFeatureBool Set a boolean feature on the device

Syntax csiErr csiSetFeatureBool(csiHandle device, const char* parameterName, bool value,

 csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function

parameterName: name (Not the display name!) of the feature to set
value: Boolean value to set the feature to (true or false)
module: Module for which the parameter should be set. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be set on the device-, transport layer-, interface- stream- or buffer-
 module

Out:

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

csiGetFeatureInt Retrieve an integer feature from the device

Syntax csiErr csiGetFeatureInt(csiHandle device, const char* parameterName, int64_t* valueOut,
 csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function
parameterName: name (Not the display name!) of the feature to get
module: Module for which the parameter should be get. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be retrieved from the device-, transport layer-, interface- stream- or buffer-
 module

Out: valueOut: Pointer to an in64_t-value where the current value of the feature will be written to

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

GenICam_SDK.docx 17

csiSetFeatureInt Set an integer feature on the device

Syntax csiErr csiSetFeatureInt(csiHandle device, const char* parameterName, int64_t value,

 csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function

parameterName: name (Not the display name!) of the feature to set
value: integer value to set the feature to
module: Module for which the parameter should be set. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be set on the device-, transport layer-, interface- stream- or buffer-
 module

Out:

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

csiGetFeatureFloat Retrieve a floating point feature from the device

Syntax csiErr csiGetFeatureFloat(csiHandle device, const char* parameterName, double* valueOut,
 csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function
 parameterName: name (Not the display name!) of the feature to get
 module: Module for which the parameter should be get. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be retrieved from the device-, transport layer-, interface- stream- or buffer-
 module

Out: valueOut: Pointer to a double-value where the current value of the feature will be written to

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

csiSetFeatureFloat Set a floating point value feature on the device

Syntax csiErr csiSetFeatureFloat(csiHandle device, const char* parameterName, double value,

 csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function
parameterName: name (Not the display name!) of the feature to set
value: floating point value to set
module: Module for which the parameter should be set. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be set on the device-, transport layer-, interface- stream- or buffer-
 module

Out:

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

GenICam_SDK.docx 18

csiGetFeatureString Retrieve a string feature from the device

Syntax csiErr csiGetFeatureString(csiHandle device, const char* parameterName, char* valueOut, size_t* sizeOut, csiModuleLevel

 module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function

 parameterName: name (Not the display name!) of the feature to get
 module: Module for which the parameter should be set. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be retrieved from the device-, transport layer-, interface- stream- or
 buffer-module

Out: valueOut: Pointer to a char-value where the current value of the feature will be written to
 sizeOut: size of the read string

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: To avoid unexpected behavior, you should first retrieve the length of the string to be received!

1. Call the function with valueOut set to NULL. The function will return the current size of the string parameter.
This enables the user to provide sufficient space to return the desired string.
Alternative: Call the function “csiGetFeatureParameter”. This function will provide all necessary information
about the parameter (including min and max values).
The maximum string length to be retrieved can be read from from the “maximumStringLength”-parameter

2. Call the function as described by providing a pointer to the string buffer with the sufficient length

csiSetFeatureString Set a string feature on the device

Syntax csiErr csiSetFeatureString(csiHandle device, const char* parameterName,const char* value,

 csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function

parameterName: name (Not the display name!) of the feature to set
value: pointer to a character array which contains the string to set
module: Module for which the parameter should be set. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be set on the device-, transport layer-, interface- stream- or buffer-
 module

Out:

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: To avoid unexpected behavior, it is recommended to retrieve the maximum string length before setting it to the device.

This can be achieved by using the function “csiGetFeatureParameter”. This function will provide all necessary information
about the parameter (including min and max values).
The string length must not exceed the length given in the “maximumStringLength”-parameter

csiExecuteCommand Execute a command on the device

Syntax csiErr csiExecuteCommand(csiHandle device, const char* parameterName,
 csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function

parameterName: name (Not the display name!) of the feature to set.
module: Module for which the parameter should be executed. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be executed on the device-, transport layer-, interface- stream- or buffer-
 module

Out:

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: The function will return immediately. Even if the triggered function is still active. To check if the command is still running,
please use the function “csiIsCommandActive”.

GenICam_SDK.docx 19

csiIsCommandActive Check if a command is still active

Syntax csiErr csiIsCommandActive(csiHandle device, const char* parameterName, bool *isActive,

 csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function

 parameterName: name (Not the display name!) of the command to execute
 module: Module for which the parameter should be set. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be retrieved from the device-, transport layer-, interface- stream- or buffer-
 module

Out: isActive: Pointer to a bool-value where the current state of the command is written to (true: active, false: inactive)

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: If a lengthy operation is triggered, it is possible to check the current status by calling this command.

csiGetFeatureReg Retrieve a register value from the device

Syntax csiErr csiGetFeatureReg(csiHandle device, const char* parameterName, char* buffer, size_t* length,
 csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function
 parameterName: name (Not the display name!) of the feature to get
 value:
 module: Module for which the parameter should be set. Please use the enum csiModuleLevel to select.

 Determines if the parameter should be retrieved from the device-, transport layer-, interface- stream- or buffer-
 module

Out: buffer: Pointer to a char-array where the current value of the feature will be written to
 length: Current length of the retrieved data

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: To avoid unexpected behavior, it is recommended to retrieve the maximum buffer length before getting it from the device.

This can be achieved by using the function “csiGetFeatureParameter”. This function will provide all necessary information
about the parameter (including min and max values).
The register length must not exceed the length given in the “featureRegLength”-parameter

csiSetFeatureReg Set a register value on the device

Syntax csiErr csiSetFeatureReg(csiHandle device, const char* parameterName,
 const char* buffer, size_t length, csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function

parameterName: name (Not the display name!) of the feature to set
buffer: pointer to the data which will be written to the r egister
length: number of bytes to write to the register
module: Module for which the register should be set. Please use the enum csiModuleLevel to select.
 Determines if the register should be set on the device-, transport layer-, interface- stream- or buffer-
 module

Out:

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: To avoid unexpected behavior, it is recommended to retrieve the maximum buffer length before setting it to the device.

This can be achieved by using the function “csiGetFeatureParameter”. This function will provide all necessary information
about the parameter (including min and max values).
The register length must not exceed the length given in the “featureRegLength”-parameter

GenICam_SDK.docx 20

csiGetFeatureParameter Retrieve a specific feature from the device. Detailed information about this feature will be returned

Syntax csiErr csiGetFeatureParameter(csiHandle device, const char* parameterName, csiFeatureParameter* featureParamOut,

 csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function

parameterName: name (Not the display name!) of the feature to get
module: Module for which the parameter should be set. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be retrieved from the device-, transport layer-, interface- stream- or buffer-
 module

Out: featureParamOut

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

csiIterateFeatureTree Provides a possibility to iterate through all available features on the camera

Syntax csiErr csiIterateFeatureTree(csiHandle device, const char* rootFeatureName, uint32_t index, char* featureNameOut,

 size_t nameBuffSize, csiFeatureType* type, csiModuleLevel module =
 CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function
rootFeatureName: name of the feature to start from. To start from the very beginning use “root”
index: This will indicate the number of the child element of the rootFeature to retrieve
nameBuffSize: size of the provided buffer for the featureNameOut
module: Module for which the feature tree should be iterated. Please use the enum csiModuleLevel to select.
 Determines if the feature tree on the device-, transport layer-, interface- stream- or buffer-
 module should be used

Out: featureNameOut: name of the retrieved feature
 type: type of the retrieved feature

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: If starting from the very beginning, use “Root” as rootFeatureName. From there call this function for each returned feature in
order to get all features of the device.

Please check the provided example “feature_iteration” for a template of usage.

csiGetFeatureEnum Retrieve an enumeration feature from the device

Syntax csiErr csiGetFeatureEnum(csiHandle device, const char* parameterName, csiFeatureParameter *featureParamOut,

 csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function
 parameterName: name (Not the display name!) of the enumeration to get
module: Module for which the parameter should be set. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be retrieved from the device-, transport layer-, interface- stream- or buffer-
 module

Out: featureParamOut: Structure which contains all necessary information about the requested feature:
the relevant entries of the csiFeatureParameter-structure:
 enumCounter: Number of different enum-entries for the enumeration
 enumIndex: Currently selected enumeration index
 valueStr: name of the enum-entry

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

GenICam_SDK.docx 21

csiSetFeatureEnum Set an enumeration feature on the device

Syntax csiSetFeatureEnum(csiHandle device, const char* parameterName, const char* value, csiModuleLevel module =

 CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function

 parameterName: name (Not the display name!) of the enumeration to get
module: Module for which the parameter should be set. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be retrieved from the device-, transport layer-, interface- stream- or buffer-
 module

Out:

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: To retrieve the possible values for this enumeration, two functions need to be called:

1. csiGetFeatureEnum: in the returned structure, the element “enumCounter” indicates the number of available
entries

2. The different entries can be retrieved by using the function “csiGetFeatureEnumEntryByIndex” simply by iterating
from 0 until the “enumCounter”-1

csiGetFeatureEnumEntryByIndex Retrieve an enumeration feature from the device by using its index

Syntax csiErr csiGetFeatureEnumEntryByIndex(csiHandle device, const char* parameterName, int32_t enumIndex,

 csiFeatureParameter *featureParamOut, csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function

 parameterName: name (Not the display name!) of the enumeration to get
 enumIndex: the index of the enumeration to get
 module: Module for which the parameter should be retrieved. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be retrieved from the device-, transport layer-, interface- stream- or buffer-
 module

Out: featureParamOut: Name of the enumeration of the requested index

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: The enumeration string will be given in the csiFeatureParameter-structure: valueStr

csiGetFeatureEnumEntryByName

Syntax csiErr csiGetFeatureEnumEntryByName(csiHandle device, const char* parameterName, const char* enumValue,

 csiFeatureParameter *featureParamOut, csiModuleLevel module = CSI_DEVICE_MODULE)

Parameters: In: device: Handle provided by the csiOpenDevice-function
parameterName: name (Not the display name!) of the enumeration to get
enumValue:
module: Module for which the parameter should be set. Please use the enum csiModuleLevel to select.
 Determines if the parameter should be retrieved from the device-, transport layer-, interface- stream- or buffer-
 module

Out: featureParamOut

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

csiRegisterInvalidateCB Register an invalidation callback function to a specific feature by name

Syntax csiErr csiRegisterInvalidateCB(csiHandle device, const char *featureName, CB_OBJECT objCB,

 CB_FEATURE_INVALIDATED_PFN pfnFeatureInvalidateCB, csiModuleLevel module =
 CSI_DEVICE_MODULE);

Parameters: In: device: Handle provided by the csiOpenDevice-function
featureName: Name of the feature register the callback to
objCB: An user object that is passed as parameter to the callback function
pfnFeatureInvalidateCB: The callback function
module: Module for which the feature invalidation callback should be registered. Please use the enum
 csiModuleLevel to select.

GenICam_SDK.docx 22

 Determines if the parameter should be retrieved from the device-, transport layer-, interface- stream- or buffer-
 module

Out: Nothing

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: This function is useful to get informed about changes in the feature tree which lead to an invalidation of features. Whenever
a feature changes its value or another attribute, the application should get informed about it.
The callback function must be of the form:

void featureInvalidated(const char *featureName, void* userObj);

csiUnRegisterInvalidateCB Unregister an invalidation callback function from a specific feature

Syntax csiErr csiUnRegisterInvalidateCB(csiHandle device, const char *featureName, csiModuleLevel module =
 CSI_DEVICE_MODULE);

Parameters: In: device: Handle provided by the csiOpenDevice-function
featureName: Name of the feature to unregister the callback from
module: Module for which the feature invalidation callback should be registered. Please use the enum
 csiModuleLevel to select.
 Determines if the parameter should be retrieved from the device-, transport layer-, interface-
 stream- or buffer-module

Out: Nothing

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

GenICam_SDK.docx 23

4.4 Functions related to image acquisition

csiGetNumberOfDataStreams Return the available number of data streams of the device

Syntax csiErr csiGetNumberOfDataStreams(csiHandle device, uint32_t* numberOfStreamsOut)

Parameters: In: device: Handle provided by the csiOpenDevice-function

Out: numberOfStreamsOut Number of available data streams for the given device

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: The returned number of data streams can be 0 if the given device is not a streaming device. The actual number of available
data streams depends on the capabilities of the device. Use this function in combination with csiGetDataStreamInfo() which
receives an index to a data stream as parameter.

csiGetDataStreamInfo Return information about the desired data stream

Syntax csiErr csiGetDataStreamInfo(csiHandle device, uint32_t dsIndex, csiDataStreamInfo* dataStreamInfoOut)

Parameters: In: device: Handle provided by the csiOpenDevice-function
 dsIndex: An index to a data stream. Starting from 0 to the number of available data streams as returned by
 csiGetNumberOfDataStreams().

Out: dataStreamInfoOut Information about the selected data stream given by the dsIndex parameter or NULL if the data
stream is not found. See documentation on csiDataStreamInfo for more information.

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

csiCreateDataStream Create a data stream to receive images

Syntax csiErr csiCreateDataStream(csiHandle device, uint32_t dsIndex, csiHandle* dataStreamOut, uint32_t numberOfBuffers,

size_t bufferSize = 0)

Parameters: In: device: Handle provided by the csiOpenDevice-function
 dsIndex: An index to a data stream. Starting from 0 to the number of available data streams as returned by
 csiGetNumberOfDataStreams()
 numberOfBuffers: The number of internal buffers to be allocated for the created data stream. This number must be at
 least 1, recommended is >= 3.
 bufferSize: (Optional) The size of one buffer in bytes. This parameter can be 0 in which case the size of a
 buffer will be defined from the standard ‘PayloadSize’ feature of a device.

Out: dataStreamOut A handle to the data stream that was created.

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: Use this function in combination with csiGetNumberOfDataStreams() to get the total number of available data streams in the
camera.

GenICam_SDK.docx 24

csiCloseDataStream Close the data stream

Syntax csiErr csiCloseDataStream(csiHandle dataStream)

Parameters: In: dateStream A handle to the data stream to be closed.

Out: None

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

Make sure to release all used buffers with csiReleaseImage() and unregister all events with csiUnregisterEvent()
 before closing the data stream. Any buffer or event will be invalid after a call to this function. In addition, acquisition must be
stopped before calling this function, see csiStopAcquisition().

csiRegisterEvent Register an event which will be signaled in the case the desired event is triggered

Syntax csiErr csiRegisterEvent(csiHandle moduleHandle, csiEventType evtType, csiHandle* eventOut, csiModuleLevel module =
 CSI_DEVICE_MODULE)

Parameters: In: moduleHandle Handle to the module that is used to register an event. This can be either a device handle or a data
 stream handle.
 evtType The type of event that should be registered.
 module The module level where the event should be registered on.

Out: eventOut A handle to the event that was registered. Use this handle to wait for events using the
 csiWaitForEvent() or csiGetNextImage() functions.

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

csiWaitForEvent Wait for a desired event to happen

Syntax csiErr csiWaitForEvent(csiHandle evt, uint64_t timeoutMilliseconds, csiEventData** evtDataOut)

Parameters: In: evt the handle of the event to wait for
 timeoutMilliseconds Timeout after the waiting stops if no event was received

Out: evtDataOut the event data for further use. See csiEventData. In case of an error or timeout the output will be
 NULL, therefore please check the return value before using it.

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: After the event was registered with csiRegisterEvent() it is possible to actively wait for the event using this function. The
waiting can be done asynchronously in a separate thread. This function must be called for each event separately. Please note
that this function will return a more general representation of the event data (csiEventData). There exists also an event data
structure for image data (csiNewBufferEventData) which contains more information on the image that was received.

Note: Also see csiGetNextImage() which can be used as convenience function to wait for new image data events.

GenICam_SDK.docx 25

csiUnregisterEvent Unregister a specific event from the event handler

Syntax csiErr csiUnregisterEvent(csiHandle evt)

Parameters: In: evt the handle to the event that should be unregistered.

Out: None

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: Unregistering the event will cancel all active pending calls to csiWaitForEvent() or csiGetNextImage()

csiEventKill Cancel all waiting functions related to this event.

Syntax csiErr csiEventKill(csiHandle evt)

Parameters: In: evt the handle of the event to be canceled

Out: None

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: Any pending call to csiWaitForEvent() or csiGetNextImage() on this event will be canceled.

csiStartAcquisition Start the acquisition on the device and created data streams

Syntax csiErr csiStartAcquisition(csiHandle device, csiAcquisitionMode mode)

Parameters: In: device: Handle provided by the csiOpenDevice-function
 mode: Acquisition mode as defined in csiAcquisitionMode

Out: None

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: This function will start the acquisition on the camera device passed with the device parameter and on all created data streams

of that device.

csiStopAcquisition Stop the acquisition on the device

Syntax csiErr csiStopAcquisition(csiHandle device)

Parameters: In: device: Handle provided by the csiOpenDevice-function

Out:

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: This function will stop the acquisition on the camera device passed with the device parameter and on all created data streams
of that device.

GenICam_SDK.docx 26

csiGetNextImage Get the next image from the data stream

Syntax csiErr csiGetNextImage(csiHandle dataStream, csiNewBufferEventData* bufferInfoOut, uint64_t timeoutMilliseconds)

Parameters: In: dataStream the handle of the data stream to wait for images on. Requires a previous call to
 csiRegisterEvent() to register for new image events on that stream.
 timeOutMilliSeconds Timeout after the waiting stops if no event was received.

Out: bufferInfoOut the event data structure containing the image data and information, see
 csiNewBufferEventData.

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: This is a convenience function that is recommended to use for image acquisition. It is an alternative to csiWaitForEvent() that

returns a more general representation of the event data. Please note that a CSI_EVT_NEWIMAGEDATA event must be
registered on the data stream to be able to wait for new images.

The image buffer returned from this function will be valid and usable as long as it is not given back to the acquisition engine
with csiReleaseImage().

csiReleaseImage Release the image back into the processing buffer from the device

Syntax csiErr csiReleaseImage(csiHandle dataStream, csiNewBufferEventData* bufferInfo)

Parameters: In: dataStream the handle to the data stream this buffer belongs to. This handle is also part of the

 csiNewBufferEventData structure
 bufferInfo Pointer to the buffer event data that was previously received from csiWaitForEvent() or
 csiGetNextImage()

Out: None

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: Releases an image buffer from the user application back to the transport layer for acquisition. Releasing the image buffer
passes the ownership of the buffer back to the transport layer and the user application is not allowed to use it anymore after
the release.

To ensure a fluent image acquisition it is recommended to keep the buffer ownership as short as possible and release the
buffer as soon as it is not needed anymore.

csiGetAcquisitionStatistics Retrieve the statistical buffer regarding the data stream (e.g. transmitted frames, etc.)

Syntax csiErr csiGetAcquisitionStatistics(csiHandle dataStream, csiAcquistionStatistics* stats)

Parameters: In: datastream Handle to the data stream the acquisition statistics should be collected on.

Out: stats The acquisition statistics, see csiAcquistionStatistics.

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

GenICam_SDK.docx 27

4.5 File transfer functions

csiGetUpdateFileType Request the update file type of a file (if available)

Syntax csiErr csiGetUpdateFileType(csiHandle device, const char* fileName, char* fileTypeOut, size_t bufferSize)

Parameters: In: device: Handle provided by the csiOpenDevice-function

 filename: The path to a file that should be checked
 bufferSize the size of the output buffer fileTypeOut

Out: fileTypeOut If the file is a valid file that can be used to update on the device, this buffer should contain the type
 of that file as string representation

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment: This function can be used to request the type of a specific file. There are multiple different types of files that can be uploaded

to a camera (for example firmware, sensor file, user settings, XML description, reference files, etc.). It can be used to detect if
a file is a valid file that can be used for an update and to detect the type of the file.

It is required to first get the type of a file before uploading it to the device to see if it is a valid file.

csiFileDownloadToDevice Downloads a file located on the local PC to the camera

Syntax csiErr csiFileDownloadToDevice(csiHandle device, const char* fileName, const char* fileType,
 uint64_t timeoutMilliseconds, csiMemTransferCallbackFunc listener = NULL,
 csiMemTransferUserData* userdata = NULL)

Parameters: In: device: Handle provided by the csiOpenDevice-function

 filename Full path of the fule to be uploaded
 filetype Type of the update file as returned from csiGetUpdateFileType()
 timeOutMilliSeconds Timeout for the update procedure in milliseconds.
 Note: An update process might take several minutes depending on the type of file, please choose
 a timeout of at least a few minutes here.
 linstener Optional callback function that will be called during the update process to inform about the
 progress.
 userdata Optional user data that will be passed as parameter to the progress callback function.

Out: None

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

csiFileUploadFromDevice Uploads a file from device to the local PC

Syntax csiErr csiFileUploadFromDevice(csiHandle device, const char* fileName, const char* fileType, uint64_t timeoutMilliseconds,

 csiMemTransferCallbackFunc listener = NULL, csiMemTransferUserData* userdata = NULL)

Parameters: In: device: Handle provided by the csiOpenDevice-function

 filename Name of the file on the local PC
 filetype the type of the file, corresponds to the name of the file on the device.
 timeoutMilliseconds Timeout for the upload procedure in milliseconds.
 Note: A file transfer process might take several minutes depending on the type of file, please
 choose a timeout of at least a few minutes here.
 listener Optional callback function that will be called during the transfer process to inform about the
 progress.
 userdata Optional user data that will be passed as parameter to the progress callback function.

Out: None

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

GenICam_SDK.docx 28

4.6 Memory transfer functions

csiReadMemory Read memory from a register address on the device

Syntax csiErr csiReadMemory(csiHandle device, uint64_t address, char* buffer, size_t sizeBytes)

Parameters: In: device: Handle provided by the csiOpenDevice-function

 address: The register address to read from
 buffer: The buffer to which the data should be read
 sizeBytes: The size of the buffer to which the buffer should be read and at the same time the number of bytes
 to read from the address.

Out:

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

csiWriteMemory Write memory to a register address on the device

Syntax csiErr csiWriteMemory(csiHandle device, uint64_t address, const char* buffer, size_t sizeBytes)

Parameters: In: device: Handle provided by the csiOpenDevice-function

 address: Address of the register on the device to which the memory should be written
 buffer: Buffer holding the data to write
 sizeBytes: The number of bytes to write from buffer to the register address

Out:

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

GenICam_SDK.docx 29

4.7 Helper functions

csiBitsPerPixelFromFormat

Syntax unsigned char csiBitsPerPixelFromFormat(const csiPixelFormat format)

Parameters: In: format

Out:

Return value: Returns the number of bits per pixels for the given pixel format or an error defined in the csiErr-Enum.

Comment:

csiGetErrorDescription Returns a human readable description of an error code

Syntax csiErr csiGetErrorDescription(csiErr error, char* bufferOut, size_t bufferSize)

Parameters: In: error: error code to retrieve the text for

 bufferSize: size of the provided text buffer

Out: bufferOut: char-buffer where the error text will be written to

Return value: Returns csiSuccess or an error defined in the csiErr-Enum.

Comment:

csiGetLibraryVersion Returns the current library version

Syntax csiErr csiGetLibraryVersion(uint32_t* major, uint32_t* minor, uint32_t* patch, uint32_t* revision, uint32_t* build)

Parameters: In: None

Out: major, minor, patch, revision: The different version numbers. Format: major.minor.path.revision. If any of the input
 values is NULL, it will be ignored.

Return value: Always returns csiSuccess.

Comment:

GenICam_SDK.docx 30

GenICam_SDK.docx 31

4.8 Enumerations

csiPixelFormat Defines the currently supported pixel data formats

Definition

typedef enum csiPixelFormat {
 CSI_PIX_FORMAT_UNKNOWN = 0x00000000,

 //// Mono formats
 CSI_PIX_FORMAT_MONO8 = 0x01080001,
 CSI_PIX_FORMAT_MONO10 = 0x01100003,
 CSI_PIX_FORMAT_MONO10_PACKED = 0x010A0046,
 CSI_PIX_FORMAT_MONO12 = 0x01100005,
 CSI_PIX_FORMAT_MONO12_PACKED = 0x010C0047,
 CSI_PIX_FORMAT_MONO16 = 0x01100007,

 //// Color formats
 CSI_PIX_FORMAT_RGB8 = 0x02180014,
 CSI_PIX_FORMAT_RGB10_PACKED = 0x0220001D,
 CSI_PIX_FORMAT_RGBA8 = 0x02200016,
 CSI_PIX_FORMAT_BGR8 = 0x02180015,

 CSI_PIX_FORMAT_RGB16 = 0x02300033,
} csiPixelFormat;

Elements

The value of each entry corresponds to its value in PFNC standard. Please refer to the PFNC standard for more
information on each specific format: https://www.emva.org/standards-technology/genicam/genicam-downloads/

csiDeviceAccessMode Defines the mode in which a device will be opened

Definition

typedef enum csiDeviceAccessMode {
 CSI_DEV_MODE_UNKNOWN = 0x00,
 CSI_DEV_MODE_NONE = 0x01,
 CSI_DEV_MODE_EXCLUSIVE,
 CSI_DEV_MODE_READ,
 CSI_DEV_MODE_CONTROL
} csiDeviceAccessMode;

Elements

CSI_DEV_MODE_UNKNOWN: Undefined access mode
CSI_DEV_MODE_NONE: No device access mode specified
CSI_DEV_MODE_EXCLUSIVE The device will be opened exclusively; no other application will be allowed to
 open the device.
CSI_DEV_MODE_READ The device will be opened in read only mode, other application might open it in
 read only mode too.
CSI_DEV_MODE_CONTROL The device will be opened in control mode (read/write), other application might
 still be able to open it in read mode.

csiDeviceAccessStatus Defines the current access status of a device as returned from device discovery

Definition

typedef enum csiDeviceAccessStatus{
 CSI_DEV_ACCESS_STATUS_UNKNOWN = 0x00,
 CSI_DEV_ACCESS_STATUS_READWRITE = 0x01,
 CSI_DEV_ACCESS_STATUS_READONLY = 0x02,
 CSI_DEV_ACCESS_STATUS_NOACCESS = 0x03,
 CSI_DEV_ACCESS_STATUS_BUSY = 0x04,
 CSI_DEV_ACCESS_STATUS_OPEN_READWRITE = 0x05,
 CSI_DEV_ACCESS_STATUS_OPEN_READ = 0x06
} csiDeviceAccessStatus;

Elements

CSI_DEV_ACCESS_STATUS_READWRITE Device is not yet open and can be opened in read/write mode.
CSI_DEV_ACCESS_STATUS_READONLY Device is not yet open and can be opened in read only mode.
CSI_DEV_ACCESS_STATUS_NOACCESS Device is listed but cannot be opened.
CSI_DEV_ACCESS_STATUS_BUSY Device is open by another process thus cannot be opened again.
CSI_DEV_ACCESS_STATUS_OPEN_READWRITE Device already owned by this producer in read write mode.
CSI_DEV_ACCESS_STATUS_OPEN_READ Device already owned by this producer in read only mode.

csiFeatureType Defines the data type of a feature

Definition

typedef enum csiFeatureType {
 CSI_UNKNOWN_TYPE,
 CSI_BOOLEAN_TYPE,
 CSI_INT_TYPE,
 CSI_FLOAT_TYPE,
 CSI_STRING_TYPE,
 CSI_ENUMERATION,
 CSI_CATEGORY,
 CSI_COMMAND,
 CSI_REGISTER,
 CSI_PORT
} csiFeatureType;

Elements

CSI_UNKNOWN_TYPE Unknown type
CSI_BOOLEAN_TYPE Boolean data type
CSI_INT_TYPE Integer data type
CSI_FLOAT_TYPE Floating point data type
CSI_STRING_TYPE String data type
CSI_ENUMERATION Enumeration feature type
CSI_CATEGORY Category feature type
CSI_COMMAND Command feature type
CSI_REGISTER Register feature type
CSI_PORT Port of the feature note map

https://www.emva.org/standards-technology/genicam/genicam-downloads/

GenICam_SDK.docx 32

csiAccessMode Defines the access mode of a feature

Definition

typedef enum csiAccessMode {
 CSI_ACCESS_UNKNOWN,
 CSI_ACCESS_NOT_AVAILABLE,
 CSI_ACCESS_READ_ONLY,
 CSI_ACCESS_READ_WRITE,
 CSI_ACCESS_WRITE_ONLY
} csiAccessMode;

Elements

CSI_ACCESS_UNKNOWN Unknown access mode, feature might not be accessible
CSI_ACCESS_NOT_AVAILABLE Feature is flagged as Not Available (N/A). There are multiple reasons for which
 a feature might become not available. For example, because the XML
 description defines it. It might also be temporarily not available because of the
 value of another node.
CSI_ACCESS_READ_ONLY Feature is read only.
CSI_ACCESS_READ_WRITE Feature can be accessed in read and write mode.
CSI_ACCESS_WRITE_ONLY Feature can only be written.

csiFeatureVisibility Defines the visibility of a feature depending on the role of a user

Definition

typedef enum csiFeatureVisibility {
 CSI_VISIBILITY_BEGINNER=1,
 CSI_VISIBILITY_EXPERT,
 CSI_VISIBILITY_GURU,
 CSI_VISIBILITY_DEVELOPER,
 CSI_VISIBILITY_INVISIBLE
} csiFeatureVisibility;

Elements

CSI_VISIBILITY_BEGINNER Feature is visible to beginner users and higher
CSI_VISIBILITY_EXPERT Feature is visible to expert users and higher
CSI_VISIBILITY_GURU Feature is visible to guru users and higher
CSI_VISIBILITY_DEVELOPER Feature is visible to developer users only
CSI_VISIBILITY_INVISIBLE Feature is invisible to any user

csiModuleLevel Defines the module level on which a specific action should be performed

Definition

typedef enum csiModuleLevel {
 CSI_UNKNOWN_MODULE,
 CSI_TRANSPORTLAYER_MODULE,
 CSI_INTERFACE_MODULE,
 CSI_DEVICE_MODULE,
 CSI_LOCAL_DEVICE_MODULE,
 CSI_STREAM_MODULE,
 CSI_BUFFER_MODULE
} csiModuleLevel;

Elements

CSI_UNKNOWN_MODULE Unknown module level
CSI_TRANSPORTLAYER_MODULE Transport layer module (System module)
CSI_INTERFACE_MODULE Interface module
CSI_DEVICE_MODULE Device module
CSI_LOCAL_DEVICE_MODULE Local device module
CSI_STREAM_MODULE Data stream module
CSI_BUFFER_MODULE Buffer module

csiDisplayNotation Defines the display notation for a floating-point feature

Definition

typedef enum csiDisplayNotation {
 CSI_NOTATION_AUTOMATIC,
 CSI_NOTATION_FIXED,
 CSI_NOTATION_SCIENTIFIC,
} csiDisplayNotation;

Elements

CSI_NOTATION_AUTOMATIC Notation not specified, can be decided by the application
CSI_NOTATION_FIXED Fixed notation
CSI_NOTATION_SCIENTIFIC Scientific notation

csiRepresentation Defines how a feature value should be represented when printed in UI

Definition

typedef enum csiRepresentation {
 CSI_REPRESENTATION_LINEAR,
 CSI_REPRESENTATION_LOGARITHMIC,
 CSI_REPRESENTATION_BOOLEAN,
 CSI_REPRESENTATION_PURENUMBER,
 CSI_REPRESENTATION_HEX,
 CSI_REPRESENTATION_IP,
 CSI_REPRESENTATION_MAC,
 CSI_REPRESENTATION_UNDEFINED
} csiRepresentation;

Elements

CSI_REPRESENTATION_LINEAR Linear representation (default)
CSI_REPRESENTATION_LOGARITHMIC Logarithmic representation
CSI_REPRESENTATION_BOOLEAN Boolean representation (true / false)
CSI_REPRESENTATION_PURENUMBER Represent as pure number
CSI_REPRESENTATION_HEX Hexadecimal representation (0x…)
CSI_REPRESENTATION_IP IP address representation
CSI_REPRESENTATION_MAC Mac address representation
CSI_REPRESENTATION_UNDEFINED Not defined, use default

GenICam_SDK.docx 33

csiLogLevel Defines the severity of log messages coming from the SDK

Definition

typedef enum csiLogLevel {
 CSI_LOGLEVEL_ERROR = 1,
 CSI_LOGLEVEL_WARN = 2,
 CSI_LOGLEVEL_INFO = 4,
 CSI_LOGLEVEL_DEBUG = 8,
 CSI_LOGLEVEL_TRACE = 16,
} csiLogLevel;

Elements

CSI_LOGLEVEL_ERROR
CSI_LOGLEVEL_WARN
CSI_LOGLEVEL_INFO
CSI_LOGLEVEL_DEBUG
CSI_LOGLEVEL_TRACE

csiErr Defines possible error values

Definition

typedef enum csiErr {
 csiSuccess = 0,
 csiNotInitialized = -100,
 csiInvalidState = -101,
 csiNotOpened = -102,
 csiNoImageDataAvailable = -103,
 csiNotFound = -104,
 csiInvalidParameter = -105,
 csiNotAvailable = -106,
 csiFunctionNotAvailable = -107,
 csiTimeout = -108,
 csiAborted = -109,
 csiFileOperationFailure = -110,
 csiFileOperationFatalError = -111,
 csiNoAccess = -112,
 csiWrongBufferSize = -113,
 csiInvalidBuffer = -114,
 csiResourceInUse = -115,
 csiNotImplemented = -116,
 csiInvalidHandle = -117,
 csiIOError = -118,
 csiParsingError = -119,
 csiInvalidValue = -120,
 csiResourceExhausted = -121,
 csiOutOfMemory = -122,
 csiBusy = -123,
 csiUnknown = -200,
 csiCustomErr = 0x0f0000000
} csiErr;

Elements

csiSuccess No error
csiNotInitialized System is not initialized, call csiInit() first
csiInvalidState An invalid state occurred, see log output for more information
csiNotOpened There was an action that requires the device / network / stream to be opened
csiNoImageDataAvailable There was no image data available
csiNotFound General error that the requested information was not found, see log for more
 detailed info on this error.
csiInvalidParameter A parameter had an invalid value
csiNotAvailable An expected result or a resource was not available
csiFunctionNotAvailable The called function or a sub-function is not available
csiTimeout A timeout occurred
csiAborted A pending operation was aborted
csiFileOperationFailure There was an error during file operation, see log for more information
csiFileOperationFatalError There was a fatal error during file operation, see log for more information
csiNoAccess Access denied (e.g., when trying to write a read only feature)
csiWrongBufferSize A given buffer was too small to store the requested data
csiInvalidBuffer The requested buffer is not valid
csiResourceInUse The requested resource is already in use by the transport layer
csiNotImplemented A function that was called is not yet implemented
csiInvalidHandle A handle passed as parameter is not valid
csiIOError The was an error during an IO operation (e.g. file or network)
csiParsingError An error occurred when parsing an XML node map file
csiInvalidValue A value that was passed parameter is not valid
csiResourceExhausted A requested resource is exhausted (e.g. hard disk space)
csiOutOfMemory Memory allocation failed, there is no more memory available
csiBusy The requested operation cannot be executed because the system is busy
csiUnknown Generic error, see log for more information
csiCustomErr = -0x0f000000 Custom error codes defined by specific transport layers

csiAcquisitionMode Defines acquisition mode

Definition

typedef enum csiAcquisitionMode {
 CSI_ACQUISITION_SINGLE_FRAME = 0x00000001,
 CSI_ACQUISITION_CONTINUOUS = 0xFFFFFFFF
} csiAcquisitionMode;

Elements

CSI_ACQUISITION_SINGLE_FRAME Acquire a single frame only
CSI_ACQUISITION_CONTINUOUS Perform continuous frame acquisition

csiEventType Defines event types that the user application can listen for

Definition

typedef enum csiEventType {
 CSI_EVT_NEWIMAGEDATA = 0x00,
 CSI_EVT_ERROR = 0x01,
 CSI_EVT_MODULE = 0x02,
 CSI_EVT_CUSTOM = 0x1000
} csiEventType;

GenICam_SDK.docx 34

Elements

CSI_EVT_NEWIMAGEDATA New image data event, can be registered on data stream module only
CSI_EVT_ERROR Error event, can be registered on all module levels
CSI_EVT_MODULE Generic module event, can be registered on all module levels
CSI_EVT_CUSTOM Custom user defined event types

csiMemTransferStatus Defines the status of memory transfer functions as it is provided in the tranfer callback

Definition

typedef enum csiMemTransferStatus
{
 csiTransferStatusInit,
 csiTransferStatusInProgress,
 csiTransferStatusInProgressWaiting
 csiTransferStatusFinishSucess,
 csiTransferStatusFinishError,
 csiTransferStatusCancelOnError
} csiMemTransferStatus;

Elements

csiTransferStatusInit Transfer was initialized
csiTransferStatusInProgress Transfer is in progress
csiTransferStatusInProgressWaiting Transfer process is waiting for response from device
csiTransferStatusFinishSucess Transfer finished successfully
csiTransferStatusFinishError Transfer finished with an error
csiTransferStatusCancelOnError Transfer was canceled after an error occurred

4.9 Structures

Struct-name csiFeatureParameter

Variable type Element name Description

csiFeatureType type Data type of the feature, see csiFeatureType

csiFeatureVisibility visibility The visibility of a feature, see csiFeatureVisibility

csiAccessMode access How a feature can be accessed, see csiAccessModecsiAccessMode

csiDisplayNotation displayNotation How to display floating point features, see csiDisplayNotation. (Optional)

csiRepresentation representation How feature data should be represented, see csiRepresentation (Optional)

char displayPrecision Precision of floating-point value representation

int64_t valueInt Value of the feature, in case of integer feature type

int64_t incrementInt Possible increment for the feature value, in case of integer feature type

int64_t minimumInt Minimum for the feature value, in case of integer feature type

int64_t maximumInt Maximum for the feature value, in case of integer feature type

double valueFlt Value of the feature, in case of floating-point feature type

double incrementFlt Possible increment for the feature value, in case of floating-point feature type

double minimumFlt Minimum for the feature value, in case of floating-point feature type

double maximumFlt Maximum for the feature value, in case of floating-point feature type

char[] valueStr Value of the feature, in case of string feature type

size_t maximumStringLength Maximum length of the string feature value

Int64_t level The level of a feature in the tree (for graphical representation)

uint32_t enumCounter Number of elements in the enumeration feature

char enumIndex The index of an enumeration entry

char[] displayName Display name of the feature for UI display

char[] name The name that identifies a feature

char[] tooltip Additional information about the feature that can be shown as tooltip in a GUI

char[] valueUnit Unit string to append to the value representation in a GUI

size_t featureRegLength Length of a register feature

int64_t featureRegAddress Address of a register feature

Bool isFeature Requested node is a feature

Struct-name csiEventData

Variable type Element name Description

csiEventType type Type of the event, see csiEventType

GenICam_SDK.docx 35

csiHandle sender Handle to the sender of the event

csiModuleLevel senderType Module level of the sender handle, see csiModuleLevel

char* tl_rawEventData Raw data pointer to the event data as it was sent by the producer. This is just the raw data of the
event which contains information about the type of event itself and not the value behind the event.
See eventValue to get the actual value (e.g., image data) behind the event, if any.

size_t tl_rawEventDataSizeBytes Size of the eventData member in bytes.

char* eventValue The received value that was shipped together with the event. This can be for example the image

data or a error description text in case of an error event. How to interpret the value depends on the
type of event.

size_t eventValueSizeBytes Size of the eventValue member in bytes.

uint64_t eventIdentifier Event identifier

Struct-name csiMemTransferInfo

Variable type Element name Description

csiHandle device Handle to the device where the transfer is running on

size_t totalBytesToTransfer Total number of bytes to be transferred

size_t bytesTransferred Current number of bytes already transferred

csiMemTransferStatus status Status of the memory transfer, see csiMemTransferStatus

csiErr errorCode Error code in case an error occurred.

const char* progressText Progress information text

Struct-name csiTLProducerInfos

Variable type Element name Description

char[] transportLayerName Name of a transport layer

char[] transportLayerDisplayName Display name of a transport layer for GUI representation

char[] transportLayerType Type of the transport layer as string

char[] transportLayerPath Full path to the transport layer library file (.cti file)

char[] transportLayerID Unique identifier of the transport layer as string

size_t pathSizeInBytes Length of the transport layer path

Struct-name csiDeviceInfo

Variable type Element name Description

char[] deviceIdentifier Unique identifier of the device

char[] name Name of the device

char[] model Model name of the device

char[] vendor Vendor of the device

char[] serialNumber Serial number of the device

char[] interfaceDescription Name or description of the interface the device is connected to

char[] interfaceID Unique identifier of the interface the device is connected to

char[] userName Username when opening the device

char[] version Version of the device

int64_t cameraSwPackageIsConsistent

csiTLProducerInfos tlProducerInfos Information about the transport layer the device is connected to, see csiTLProducerInfos

csiDeviceAccessStatus accessStatus The current access status of the device, see csiDeviceAccessStatus

uint64_t timestampFrequency Frequency of the timestamps coming from the device

GenICam_SDK.docx 36

Struct-name csiDiscoveryInfo

Variable type Element name Description

uint32_t numDevices Current number of devices found during discovery

double progress Discovery progress

bool discoveryRunning Indicates if the discovery is still ongoing (true) or finished (false)

csiDeviceInfo[] devices A list of devices found so far. The number of the devices found might exceed the size of this list,

in which case the information must be acquired using the csiGetDeviceInfo() function.

Struct-name csiDataStreamInfo

Variable type Element name Description

char[] identifier Unique identifier of a data stream

char[] displayName Display name of a data stream that can be used for GUI representation

uint32_t index Internal index of the data stream

Struct-name csiImageInfo

Variable type Element name Description

uint32_t width Width of the image

uint32_t height Height of the image

uint32_t linePitch Line pitch of the image data in bytes

uint32_t numChannels Number of channels

csiPixelFormat format Pixel format of the image data, see csiPixelFormat

Struct-name csiNewBufferEventData

Variable type Element name Description

csiEventType type Type of the event, this is always CSI_EVT_NEWIMAGEDATA for this type of event

csiHandle sender Sender of the event, a stream handle

csiModuleLevel senderType Type of the sender, this is always CSI_STREAM_MODULE for this type of event

char* tl_rawEventData Raw data pointer to the event data as it was sent by the producer. This is just the raw data of the
event which contains information about the type of event itself and not the value behind the
event. See eventValue to get the actual value (e.g. image data) behind the event, if any.

size_t tl_rawEventDataSizeBytes Size of the eventData member in bytes.

unsigned char* eventValue Pointer to the image data

size_t eventValueSizeBytes Size of the image data in bytes

uint64_t eventIdentifier Unique identifier of this event

csiHandle bufferHandle Handle to the buffer holding the image (for internal use)

uint64_t imageNr Number of the recorded image

uint64_t bufferIdentifier Unique identifier of the image, usually the pointer as integer representation

uint64_t timestampMS Timestamp of the image in milliseconds

uint64_t timestampRaw Raw timestamp of the image

csiImageInfo imageInfo Further image information, see csiImageInfo

Struct-name csiAcquistionStatistics

Variable type Element name Description

Uin64_t framesUnderrun The number of frames that were received in the TL but not send to the application because of

missing buffers.

GenICam_SDK.docx 37

uint64_t framesDropped Number of frames dropped during acquisition

uint64_t framesAcquired Total number of frames acquired in current acquisition

uint64_t networkPacketsOK For GigE Vision: The number of network packets received without errors.

uint64_t networkPacketsError For GigE Vision: The number of network packets sent with an error.

GenICam_SDK.docx 38

5 Installation

5.1 Windows installation

On Windows platforms, the SDK can be installed together with the GCT software package. The SDK is
not part of the default installation and must be selected during the installation phase of GCT.

During the installation all required software will be placed in the installation folder.

Please refer to the GCT documentation for a step by step installation of the full package.

5.1.1 Installer Contents

The default installation location of the SDK on Windows is

C:\Program Files\Chromasens\GCT2

- SDK The programming interface and library for customer applications

Locations: <installation root>\bin\CSI.dll

 <installation root>\include\csi\csi.h (and others)

 <installation root>\lib\CSI.lib

- CMake Config CMake configuration files

Locations: <installation root>\share\CSGenICam\cmake

- GCT The camera configuration and acquisition application with graphical

 interface

Locations: <installation root>\bin\gct.exe

- SDK Examples Example source code (C++) that shows the basic usage of the SDK

Locations: C:\Users\Public\Documents\Chromasens\GCT2\examples

- Documentation Documentation of the SDK

Location: <installation root>\doc

- GenTL Producers (Optional) GenTL producers for Windows systems, if available

Locations: <installation root>\GenTL

5.2 Linux installation

This chapter covers the installation procedure of Chromasens Gen<i>Cam SDK on Linux. The SDK is
distributed in an installation package and can be installed using the package manager of your
distribution.

Note: Please note the list of currently supported Linux distributions:

- Ubuntu 18.04 LTS

5.2.1 Preparation

Download the software package from the Chromasens website chromasens.de. Please note that the
installation requires administrative rights on the system.

5.2.2 Step by Step Installation Ubuntu 18.04

1.) Open a new terminal window

chromasens.de

GenICam_SDK.docx 39

2.) Navigate to the directory where the SDK software package is located. In this example it will be
in the Downloads folder:

cd ~/Downloads

3.) Update the package manager:

sudo apt update

4.) Install the package using the package manager, replace the <version> part by the version of
the downloaded package. The package manager might ask to install additional required
dependencies if they are not yet present in the system:

sudo apt install ./csgenicam-<version>.deb

5.) After the installation, a system reboot is required to apply changes to the system environment.

5.2.3 Installer Contents

The software package is grouped into the following components:

- SDK The programming interface and library for customer applications

Locations: /usr/lib/libcsi.so

 /usr/include/csi/csi.h

 /usr/share/CSGenICam/cmake/*

- GCT The camera configuration and acquisition application with graphical

 interface

Locations: /usr/bin/gct

- SDK Examples Example source code (C++) that shows the basic usage of the SDK

Locations: /usr/share/CSGenICam/examples

- Documentation Documentation of the SDK

Location: /usr/share/CSGenICam/doc

- GenTL Producers (Optional) GenTL producers for Linux systems, if available

Locations: /usr/lib

- CCU Argus driver The driver for communication with the CCU hardware.

Locations: /usr/share/argus/driver

GenICam_SDK.docx 40

Chromasens GmbH

Max-Stromeyer-Straße 116 Phone: +49 7531 876-0 www.chromasens.de

78467 Konstanz Fax: +49 7531 876-303 info@chromasens.de

Germany

J
u
n
e
 2

0
2
1

C

o
p
y
ri
g

h
t
b
y
 C

h
ro

m
a

s
e
n
s
 G

m
b

H

