

RML Assumptions:	Machine has no electronic guarding at all at initial assessment, frame is presen
Keywords:	See "Example Keywords" sheet for further keywords

No.	Assembly	Machine Location	Type of Hazard	Potential consequences	Comments	Initial assessment								Residual Risk Action			
						LO	FE D	PH NF	HRN	Risk leve	Action required	LO	FE DPI	H NP	HRN	Risk level	Required
1 Infeed Conveyor	Infeed Conveyor	Driver Pully Assembly Driven Pully Assembly Infeed Modular Belt Guide	Kinetic energy (Drawing in Nip Points/Crushing Shearing)	Injuries include amputations, lacerations, contusions crushing of tissues and bones, and broken bones.	Hazards - drawing in of operator getting caught in betitangled with power belt. Why is the hazard there - Conveyor running at linear speed >500mm/s. What drives the hazard - Electric Most of the hazard - Electric Most of the hazard - Electric Most of the hazard occur - Operator handlothing hair becoming caught in Belt. Why would the hazard occur - Operator intervention or inspection around the conveyor Potential occurrence of hazard - Possible Possible ham—Brusing, Locardions Milor Bone Possible ham—Brusing, Locardions Milor Bone	2	4	2 1	16	Low, significar	Operator / Maintenance Staff t Awareness Nip Point Warning Signs	2	4 2	1	16	Low, significant	Operator / Maintenance Staff Awareness and Training
		Motor And Gearbox Assembly	Thermal Energy		Hazards - 1. Burns due to contact with hot Sufface of the motor and Geathox. 2. Notice insulation any emitted and can cause short circuits and permanent damage to the motor. 2. Why is the hazard there - Motors with a gearbox combination drives the conveyor and tend to heat! (extensive temperatures >60 deg celcius can be hazards.) Burdies Energy and Frields on the state of the s	8	4 (1.5 1	16	Low, significar	Operator / Maintenance Staff Awareness Hot Surface Warning Signs	5	4 0.5	1	10	Low, significant	Operator / Maintenance Staff Awareness and Training
		driver Pully Assembly Driven Pully Assembly Driven Pully Assembly Modor And Gearbox Assembly	1. Noise 2.Vibration	2. Tingling and loss of sensation in the fingers 3. Pain and cold sensations between perodic white fingers attacks 4. Loss of grip strength & Bone cysts in fingers and wrists	Hazards -vibrate and generates excessive force in the bearing area and reduces the life of the machine Why is the hazard there - Electric Motor drives the best regardless of any minute missalignment which may further cause vibration. What drives the hazard - Electrical Energy. How could harm be caused - Operator in contact with motor and gearbox Surface. Why would the hazard cocurr-logater intervention or inspection around the machine, intervention by maintenance personnel. Potential occurrence of hazard - Constance charges in tendons, muscles, bones and joints . (the highest around 8-16 Hz (Hertz or cycles per second)) 2. Noise may damage hearing (Permissible limit is 75 dB for daylime and 70 dB at night from 1m Distance)	1.5	5.0 2	2.0 1.0	15.0	Low, significar	Operator / Maintenance Staff Awareness	5.0	1.5 2.0	1.0	4.5	Low, significant	Regular Maintenance
		Motor Assembly	EMF/ Electro static	Electrostatic sparks may have enough energy to produce electric shocks, cause electronic damage, spoil mechanical components	Hazards - electrical shock, fire and arc flash. Why is the hazard there - When power up the Electric Motor & Its power cables are open and fed up floor	0.033	4	15 1	1.98	Negligible	Use best practice design	0.03	4 15	1	1.8	Negligible	
			Parts becoming live under fault conditions / Short-circuit / Overload	Burn		0.033	4 (.5 1	0.066	Negligible	Use best practice design	0.03	4 0.5	1	0.06	Negligible	
				Electrocution	What drives the hazard - Electrical Energy How could harm be caused - Operator in contact with Machine Why would the hazard occur - Operator intervention or inspection around the machine, intervention by maintenance personnel.	0.033	4 (.5 1	0.066	Negligible	Use best practice design	0.03	4 0.5	1	0.06	Negligible	Operator / Maintenance Staff Awareness and Training
			Motor Overload may cause overheating of the motor and damage the windings of the motor	Potential occurrence of hazard - Constantly. Possible harm - Minor burns , Electrocution	0.033	4	15 1	1.98	Negligible	Use best practice design	0.03	4 15	1	1.8	Negligible		